Different behavior of Nano sheet and Bulk of the hexagonal boron nitride with first principal calculation approach

Document Type : Original Article

Authors

Department of physics, faculty of science, university of Mazandaran, Babolsar, Iran

Abstract

In the present work, the electronic, optical, and nano structural properties of boron nitride samples (in monolayer, bilayer and bulk form) were determined with the help of density functional theory (DFT) and calculations using the Siesta package and the generalized gradient approximation (GGA). -PBE) has been discussed. It is found that the bond length, bond angles, and curvature values of boron nitride are almost the same in monolayer, bilayer, and bulk states. Of course, these structures are considered to have planar forms. Considering the existence of the low band gap energy between the bottom of the conduction band and the maximum of the valence band, (although the size of the bandgap decreases with the increase in the number of layers), it can be concluded that the samples are semiconductors.
Since there is a relationship between refractive index, magnetic permeability, and electrical permeability (magnetic parameters are not discussed in the present work), dielectric function, reflection coefficient, absorption coefficient, and refractive index are also investigated. The two real and imaginary components of the dielectric function are important in the properties of materials in terms of nanocomposites. Here, special attention is paid to the main peak in the real part of the dielectric constant.

Keywords

Main Subjects


© 2024 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Kiessling, R., 1947. The crystal structures of 
molybdenum and tungsten borides. Acta Chem. Scand, 1, 
PP. 893-916.
[2] Klesnar, H., Aselage, T.L., Morosin, B., Kwei, G.H., 
Lawson, A.C., 1996. The diboride compounds of 
molybdenum: MoB2− x and Mo2B5− y. J. Alloy Compd, 
241, PP. 180-186.
[3] Higashi, I., Takahashi, Y., Okada, S., 1986. Crystal 
structure of MoB2. J. Less-Common Met, 123, PP. 277-
283.
[4] Omidirad, R., Azizi, K., 2020. Theoretical study of 
adsorption of ethanol and acetone molecules by perfect 
and defected h-BN nanosheet. Superlattices and 
Microstructures, 139, PP. 106403-106412.
[5] Cui, H., Liu, T., Jia, P., 2020. A DFT study of healing the N 
vacancy in h-BN monolayer by NO molecules. Applied 
Physics A, 126, PP. 292 -297.
[6] Silvestrelli, P.L., Nava, M., Ancilotto, F., Reatto, L., 2019. 
Prediction for Two Spatially Modulated Superfluids: 
4He on Fluorographene and on Hexagonal BN. Journal of 
Low Temperature Physics, 196, PP. 42-51.
[7] Okada, S., Takahashi, Y., Higashi, I., Atoda, T., 1987. 
Preparation of single crystals of MoB2 by the 
aluminium- flux technique and some of their properties. 
J. Mater. Sci, 22, PP. 2993-2999.
[8] Thomas, S., Manju, M.S., Ajith, K.M., Lee, S.U., Asle Zaeem, 
M., 2020. Strain-induced work function in h-BN and BCN
monolayers. Physica E: Low-dimensional Systems and 
Nanostructures, 123, PP. 114180 -114189.
[9] Aksu Korkmaz, Y., Bulutay, C., Sevik, C., 2020. Defect 
states in monolayer hexagonal BN: A comparative DFT 
and DFT-1/2 study. Physica B: Physics of Condensed 
Matter, 584, PP. 411959-411966.
[10] Zhou, X., Chu, W., Zhou, Y., Sun, W., Xue, Y., 2018. DFT 
simulation on H2 adsorption over Ni-decorated 
defective h-BN nanosheets. Applied Surface Science, 439, 
PP. 246-253.
[11] Lu, B., Jia, J., Guo, F., Li, D., Zhao, Y., Zhao, X., Gao, H., 
2017. Generated photocatalytic performance of h-BN 
sheet by coupling with reduced graphene 
oxide/fluorid: A DFT study. Physica E: Low-
dimensional Systems and Nanostructures, 93, PP. 46-
53.
[12] Beiranvand, R., Valedbagi, S.H., 1996. Electronic 
and optical properties of h-BN nanosheet: A first 
principles calculation. Diamond and Related 
Materials, 58, PP. 190-195.
[13] Perdew, J.P., Burke, K., Ernzerhof, M., 1996. 
Generalized Gradient Approximation Made Simple. 
Phys. Rev. Lett., 77, PP. 3865-3872.
[14] Ding, Y., Wang, Y., Ni, J., 2009. Electronic properties 
of grapheme nanoribbons embedded in boron 
nitride sheets. Applied Physics Letters, 95, 
PP.123105-123109.
[15] Okada, S., Otani, M., 2010. Stability and electronic 
structure of potassium-intercalated hexagonal boron 
nitride from density function calculations, Physical 
Review B, 81, PP. 233401-233406.
[16] Tang, Q., Zhou, Z., Chen, Z., 2011. Molecular Charge 
Transfer: A Simple and Effective Route to Engineer 
the Band Structures of BN Nanosheets and 
Nanoribbons. Phys. Chem. C, 115, PP. 18531–18537.
[17] Altintas, B., Parlak, C., Bozkurt, C., Eryigit, R., 2011. 
Intercalation of graphite and hexagonal boron 
nitride by lithium. Eur. Phys. J. B, 79, P. 301.
[18] Sumiyoshi, A., Hyodo, H., Kimura, K., 2012.
Structural analysis of Li-intercalated hexagonal 
boron nitride. Journal of solid state Chemistry, 187, 
PP. 208-210.
[19] Sumiyoshi, A., Hyodo, H., Sato, Y., Terauchi, M., 
Kimura, K., 2015. Good reproductive preparation 
method of Li-intercalated hexagonal boron nitride 
and transmission electron microscopy-Electron 
energy loss spectroscopy analysis. Solid State Sci., 47, 
P. 68.
[20] Huang, C., Ye, W., Liu, Q., Qiu, X., 2014. Dispersed 
Cu2O Octahedrons on h-BN Nanosheets for 
p-Nitrophenol Reduction. ACS Appl. Mater. Interfaces, 
6, PP. 14469–14476.
[21] Liu, R., Cheng, C., 2007. Ab initio Studies of the 
Possible Magnetism in BN Sheet by Non-magnetic 
Impurities and Vacancies. Phys. Rev. B, 76, PP. 
014405-014411.
[22] Wickramaratne, D., Weston, L., VandeWalle, C.G., 
2018. Monolayer to Bulk Properties of Hexagonal 
Boron Nitride. J. Phys. Chem. C, 122, PP. 
25524−25529.
[23] Dresselhaus, M.S., 2001. Solid state physics, Part II.
[24] Landau, L.D., Lifshitz, E.M., 1960. Electrodynamics in 
continus media, Pergamon Press.
[25] Abedi Ravan, B., Jafari, H., 2019. DFT study on 
electronic and optical properties of halogenadsorbed hexagonal boron nitride. Computational 
Condensed Matter, 21, P. e00416