[1] Kermanian, M., Sadighian, S., Ramazani, A., Naghibi, M., Khoshkam, M. and Ghezelbash, P. 2021. Inulin-Coated Iron Oxide Nanoparticles: A Theranostic Platform for Contrast-Enhanced MR Imaging of Acute Hepatic Failure. ACS Biomaterials Science and Engineering, 7(6), pp. 2701-2715.
[2] Senturk, F., Cakmak, S., Kocum, I. C., Gumusderelioglu, M. and Ozturk, G.G. 2021. GRGDS-conjugated and curcumin-loaded magnetic polymeric nanoparticles for the hyperthermia treatment of glioblastoma cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 622, p. 126648.
[3] Halevas, E., Mavroidi, B., Nday, C.M., Tang, J., Smith, G.C., Boukos, N., Litsardakis, G., Pelecanou, M. and Salifoglou, A. 2020. Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. Journal of Inorganic Biochemistry, 213, p. 111271.
[4] Aghazadeh, M., Karimzadeh, I., Ghannadi Maragheh, M., Ganajli, M.R. 2018. Gd3+ doped Fe3O4 nanoparticles with proper magnetic and supercapacitive characteristics: A novel synthesis platform and characterization. Korean Journal of Chemical Engineering, 35, pp. 1341-1347.
[5] Pucci, C., Degl'Innocenti, A., Belenli Gümüş, M. and Ciofani, G. 2022. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era. Biomaterials Science, 10, pp. 2103-2121.
[6] Gholizadeh, A. and Jafari, E. 2017. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere. Journal of Magnetism and Magnetic Materials, 422, pp. 328-336.
[7] Gholizadeh, A. 2018. A comparative study of the physical properties of Cu-Zn ferrites annealed under different atmospheres and temperatures: Magnetic enhancement of Cu0.5Zn0.5Fe2O4 nanoparticles by a reducing atmosphere. Journal of Magnetism and Magnetic Materials, 452, pp. 389-397.
[8] Gholizadeh, A. 2017. A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods. Journal of the American Ceramic Society, 100 (8), pp. 3577-3588.
[9] Mojahed, M., Rezagholipour Dizaji, H. and Gholizadeh, A. 2022. Structural, magnetic, and dielectric properties of Ni/Zn co-substituted CuFe2O4 nanoparticles. Physica B: Condensed Matter, 646, p. 414337.
[10] Abharya, A. and Gholizadeh, A. 2020. Structural, Optical and Magnetic Feature of Core-Shell Nanostructured Fe3O4@GO in Photocatalytic Activity.” Iranian Journal of Chemistry and Chemical Engineering, 39 (2), pp. 49-58.
[11] Deka, B., Cho, J., Lee, Y.-W., Yoo, I.-R., Ahn, C.W. and Cho, K.-H. 2021. Cation distribution and magnetostrictive strain in CuFe2−xGaxO4 ceramics. Ceramic International, 47(9) pp. 11848-11855.
[12] Ran, F.Y., Tsunemaru, Y., Hasegawa, T., Takeichi, Y., Harasawa, A., Yaji, K. Kim, S. and Kakizaki, A., 2011. Valence band structure and magnetic properties of Co-doped Fe3O4(100) films. Journal of Applied Physics, 109 (12), p. 123919.
[13] Choupani, M. and Gholizadeh, A. 2023. Correlation between structural phase transition and physical properties of Co2+/Gd3+ co-substituted copper ferrite. Journal of Rare Earths, In press, https://doi.org/10.1016/j.jre.2023.06.011.
[14] Aghazadeh, M., Karimzadeh, I., Ganjali, M.R. and Behzad, A. 2017. Mn2+-doped Fe3O4 nanoparticles: a novel preparation method, structural, magnetic and electrochemical characterizations. Journal of Materials Science: Materials in Electronics, 28, pp. 18121–18129
[15] Aghazadeh, M. and Ganjali, M.R. 2018. One-pot electrochemical synthesis and assessment of super-capacitive and super-paramagnetic performances of Co2+ doped Fe3O4 ultra-fine particles. Journal of Materials Science: Materials in Electronics, 29, pp. 2291-2300.
[16] Aghazadeh, M., Forati-Rad, H., Yavari, K. and Mohammadzadeh, K. 2021. On-pot fabrication of binder-free composite of iron oxide grown onto porous N-doped graphene layers with outstanding charge storage performance for supercapacitors. Journal of Materials Science: Materials in Electronics, 32, pp. 13156-13176.
[17] Malek Barmi, A., Moosavian, M.A., Aghazadeh, M. and Golikand, A.N. 2020. One-pot EPD/ECD fabrication of high-performance binder-free nanocomposite based on the Fe3O4 nanoparticles/porous graphene sheets for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 31, pp. 19569-19586.
[18] Dehghanzad, B., Razavi, Aghjeh M. K., Rafeie, O., Tavakoli, A. and Oskooi, A.J. 2016. Synthesis and characterization of graphene and functionalized graphene via chemical and thermal treatment methods. RSC Advances, 6, pp. 3578-3585.
[19] Aziz, M., Abdul Halima, F. S. and Jaafar, J. 2014. Preparation and Characterization of Graphene Membrane Electrode Assembly. Jurnal Teknologi, 69(9), pp. 11-24.
[20] Naebe, M., Wang, J., Amini, A., Khayyam, H., Hameed, N., Li, L.H., Chen, Y. and Fox, B. 2014. Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites. Scientific Reports, 4, p. 4375.
[21] Wang, H., Wei, C., Zhu, K., Zhang, Y., Gong, C., Guo, J., Zhang, J., Yu, L. and Zhang, J. 2017. Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors. ACS Applied Materials and Interfaces, 9(11), pp. 9763-9771.