[1] Sharma, P.K., Dorlikar, S., Rawat, P., Malik, V., Vats, N., Sharma, M., Rhyee, J.S. and Kaushik, A.K., 2021. Nanotechnology and its application: a review. Nanotechnology in cancer management, pp.1-33.
[2] Ahmad, R., Tripathy, N., Ahn, M.S., Bhat, K.S., Mahmoudi, T., Wang, Y., Yoo, J.Y., Kwon, D.W., Yang, H.Y. and Hahn, Y.B., 2017. Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Scientific reports, 7(1), p.5715. [3] P. Leangtanom et al., "Highly sensitive and selective sensing of H2S gas using precipitation and impregnation-made CuO/SnO2 thick films," Nanoscale Research Letters, vol. 16, no. 1, p. 70, 2021.
[4] Cea, P., 2016. The high temperature superconductivity in cuprates: physics of the pseudogap region. The European Physical Journal B, 89, pp.1-54.
[5] Tada, S., Watanabe, F., Kiyota, K., Shimoda, N., Hayashi, R., Takahashi, M., Nariyuki, A., Igarashi, A. and Satokawa, S., 2017. Ag addition to CuO-ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation. Journal of Catalysis, 351, pp.107-118.
[6] Hao, L., Zhang, Y., Kubomura, R., Ozeki, S., Liu, S., Yoshida, H., Jin, Y. and Lu, Y., 2021. Preparation and thermoelectric properties of CuAlO2 compacts by tape casting followed by SPS. Journal of Alloys and Compounds, 853, p.157086.
[7] Koffyberg, F.P. and Benko, F.A., 1982. A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO. Journal of Applied Physics, 53(2), pp.1173-1177.
[8] Mohamed, R.M., Harraz, F.A. and Shawky, A., 2014. CuO nanobelts synthesized by a template-free hydrothermal approach with optical and magnetic characteristics. Ceramics International, 40(1), pp.2127-2133.
[9] Tranquada, J.M., Sternlieb, B.J., Axe, J.D., Nakamura, Y. and Uchida, S.I., 1995. Evidence for stripe correlations of spins and holes in copper oxide superconductors. nature, 375(6532), pp.561-563.
[10] Muhibbullah, M., Hakim, M.O. and Choudhury, M.G.M., 2003. Studies on Seebeck effect in spray deposited CuO thin film on glass substrate. Thin Solid Films, 423(1), pp.103-107.
[11] Gaur, U.K., Kumar, A. and Varma, G.D., 2014. The synthesis of self-assembled polycrystalline 1-D CuO nanostructures in aqueous medium and a study of their multifunctional features. CrystEngComm, 16(14), pp.3005-3014.
[12] Zhang, J., Liu, J., Peng, Q., Wang, X. and Li, Y., 2006. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chemistry of materials, 18(4), pp.867-871.
[13] Gou, L. and Murphy, C.J., 2003. Solution-phase synthesis of Cu2O nanocubes. Nano Letters, 3(2), pp.231-234. [14] Kumar, K. and Chowdhury, A., 2017. Facile synthesis of CuO nanorods obtained without any template and/or surfactant. Ceramics International, 43(16), pp.13943-13947.
[15] Gao, D., Yang, G., Li, J., Zhang, J., Zhang, J. and Xue, D., 2010. Room-temperature ferromagnetism of flowerlike CuO nanostructures. The Journal of Physical Chemistry C, 114(43), pp.18347-18351.
[16] Kafi Ahmadi, L. and Khademinia, S., 2022. Fabrication, characterization, and photocatalytic degradation of malachite green by CuO nanocatalyst. Progress in Physics of Applied Materials, 2(2), pp.83-92.
[17] Basith, N.M., Vijaya, J.J., Kennedy, L.J. and Bououdina, M., 2013. Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Physica E: Low-dimensional Systems and Nanostructures, 53, pp.193-199.
[18] Huang, J., Wu, H., Cao, D. and Wang, G., 2012. Influence of Ag doped CuO nanosheet arrays on electrochemical behaviors for supercapacitors. Electrochimica Acta, 75, pp.208-212.
[19] Ponnarasan, V. and Krishnan, A., 2017. Synthesis, structural and optical properties of cobalt doped CuO nanoparticles. International Journal of Nanoscience, 16(02), p.1650031.
[20] Jayaprakash, J., Srinivasan, N., Chandrasekaran, P. and Girija, E.K., 2015. Synthesis and characterization of cluster of grapes like pure and Zinc-doped CuO nanoparticles by sol–gel method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, pp.1803-1806.
[21] Gvozdenko, A.A., Siddiqui, S.A., Blinov, A.V., Golik, A.B., Nagdalian, A.A., Maglakelidze, D.G., Statsenko, E.N., Pirogov, M.A., Blinova, A.A., Sizonenko, M.N. and Simonov, A.N., 2022. Synthesis of CuO nanoparticles stabilized with gelatin for potential use in food packaging applications. Scientific reports, 12(1), p.12843.
[22] Blinov, A.V., Gvozdenko, A.A., Yasnaya, M.A., Blinova, A.A., Kravtsov, A.A., Krandievsky, S.O. and Kramarenko, V.N., 2020. Synthesing and studying the structure of nanoscale copper (II) oxide stabilized by polyethylene glycol. Her Bauman Moscow State Tech. Univ. Ser. Nat. Sci, 3, pp.56-70.
[23] Hasan, I.M., Abd-Elsabur, K.M., Assaf, F.H. and Abd-Elsabour, M., 2022. Folic acid determination in food samples using green synthesized copper oxide nanoparticles and electro-poly (methyl orange) sensor. Electrocatalysis, 13(6), pp.759-772.
[24] Pino, F., Mayorga-Martinez, C.C. and Merkoçi, A., 2016. High-performance sensor based on copper oxide nanoparticles for dual detection of phenolic compounds and a pesticide. Electrochemistry Communications, 71, pp.33-37.
[25] Kumar, A., Choudhary, A., Kaur, H., Mehta, S. and Husen, A., 2021. Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. Journal of Nanobiotechnology, 19(1), p.256.
[26] Siddiqui, H., Parra, M.R., Pandey, P., Qureshi, M.S. and Haque, F.Z., 2020. Utility of copper oxide nanoparticles (CuO-NPs) as efficient electron donor material in bulk-heterojunction solar cells with enhanced power conversion efficiency. Journal of Science: Advanced Materials and Devices, 5(1), pp.104-110.
[27] Jayakodi, S. and Shanmugam, V.K., 2020. Green synthesis of CuO nanoparticles and its application on toxicology evaluation. Biointerface Res. Appl. Chem, 10(5), pp.6343-6353.
[28] Thangamani, C., Ponnar, M., Priyadharshini, P., Monisha, P., Gomathi, S.S. and Pushpanathan, K., 2019. Magnetic behavior of ni-doped cuo nanoparticles synthesized by microwave irradiation method. Surface Review and Letters, 26(05), p.1850184.
[29] Gopalakrishnan, R. and Ashokkumar, M., 2021. Rare earth metals (Ce and Nd) induced modifications on structural, morphological, and photoluminescence properties of CuO nanoparticles and antibacterial application. Journal of Molecular Structure, 1244, p.131207.
[30] Abhilasha, Kumari, N. and Gautam, R., 2023. Investigation of impact of pH and rare earth metal dopant concentration on structural, optical and thermal properties of CuO nanoparticles. Applied Physics A, 129(1), p.64.
[31] Rao, M.P., Wu, J.J., Asiri, A.M., Anandan, S. and Ashokkumar, M., 2018. Photocatalytic properties of hierarchical CuO nanosheets synthesized by a solution phase method. Journal of Environmental Sciences, 69, pp.115-124.
[32] Reddy, K.R., 2017. Green synthesis, morphological and optical studies of CuO nanoparticles. Journal of Molecular Structure, 1150, pp.553-557.
[33] Basith, N.M., Vijaya, J.J., Kennedy, L.J. and Bououdina, M., 2014. Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method. Materials science in semiconductor processing, 17, pp.110-118.
[34] Bhattacharjee, A. and Ahmaruzzaman, M., 2018. Microwave assisted facile and green route for synthesis of CuO nanoleaves and their efficacy as a catalyst for reduction and degradation of hazardous organic compounds. Journal of Photochemistry and Photobiology A: Chemistry, 353, pp.215-228.
[35] Islam, M.R., Saiduzzaman, M., Nishat, S.S., Kabir, A. and Farhad, S.F.U., 2021. Synthesis, characterization and visible light-responsive photocatalysis properties of Ce doped CuO nanoparticles: a combined experimental and DFT+ U study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 617, p.126386.
[36] Velliyan, S. and Rajendran, V., 2021. Study on the effect of Ce3+ doping on structural, morphological and optical properties of CuO nanoparticles synthesized via combustion technique. Physica B: Condensed Matter, 613, p.413015.
[37] Lv, Y., Li, L., Yin, P. and Lei, T., 2020. Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide. Dalton Transactions, 49(15), pp.4699-4709.
[38] Chen, Y., Tan, H., Wu, X., Sun, Q., Wang, D. and Wang, Y., 2019. Effect of doping Ce ions on morphology and photocatalytic activity of CuO nanostructures. Crystal Research and Technology, 54(9), p.1900033.
[39] Bosigo, R., Lepodise, L.M., Kuvarega, A. and Muiva, C., 2021. Hydrothermal synthesis of CuO and CeO2/CuO nanostructures: spectroscopic and temperature dependent electrical properties. Journal of Materials Science: Materials in Electronics, 32(6), pp.7136-7152.
[40] Khaleghi, H. and Ehsani, M.H., 2022. Synthesis and characterization of TM-doped CuO nanosheets (TM= Fe, Mn). Applied Physics A, 128(11), p.969.
[41] Swatsitang, E., Karaphun, A. and Putjuso, T., 2020. Influence of Fe: Co co–doping on the morphology, optical and magnetic properties of Cu1-(x+ y) FexCoyO nanostructures prepared by a hydrothermal method. Physica B: Condensed Matter, 583, p.412044.
[42] Singh, B.P., Chaudhary, M., Kumar, A., Singh, A.K., Gautam, Y.K., Rani, S. and Walia, R., 2020. Effect of Co and Mn doping on the morphological, optical and magnetic properties of CuO nanostructures. Solid State Sciences, 106, p.106296.
[43] Theivarasu, C. and Indumathi, T., 2017. Effect of rare earth metal ion Ce 3+ on the structural, optical and magnetic properties of ZnO nanoparticles synthesized by the co-precipitation method. Journal of Materials Science: Materials in Electronics, 28, pp.3664-3671.
[44] Esmaeili, S., Ehsani, M.H. and Fazli, M., 2020. Photo-catalytic activities of La0. 7Ba 0.3 MnO3 nanoparticles. Optik, 216, p.164812.