[1] Khemiri, N., Chamekh, S. and Kanzari, M., 2020. Properties of thermally evaporated CZTS thin films and numerical simulation of earth abundant and non toxic CZTS/Zn (S, O) based solar cells. Solar Energy, 207, pp.496-502.
[2] Isotta, E., Syafiq, U., Ataollahi, N., Chiappini, A., Malerba, C., Luong, S., Trifiletti, V., Fenwick, O., Pugno, N.M. and Scardi, P., 2021. Thermoelectric properties of CZTS thin films: Effect of Cu–Zn disorder. Physical Chemistry Chemical Physics, 23(23), pp.13148-13158.
[3] Tanaka, K., Oonuki, M., Moritake, N. and Uchiki, H., 2009. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Solar Energy Materials and Solar Cells, 93(5), pp.583-587.
[4] Xu, B., Qin, X., Lin, J., Chen, J., Tong, H., Qi, R., Yue, F., Chen, Y., Yang, P., Chu, J. and Sun, L., 2022. Positive role of inhibiting CZTSSe decomposition on intrinsic defects and interface recombination of 12.03% efficient kesterite solar cells. Solar RRL, 6(8), p.2200256.
[5] Islam, M.F., Yatim, N.M. and Hashim, M.A., 2021. A review of CZTS thin film solar cell technology. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 81(1), pp.73-87.
[6] Sayed, M.H., Schoneberg, J., Parisi, J. and Guetay, L., 2018. Influence of silver incorporation on CZTSSe solar cells grown by spray pyrolysis. Materials Science in Semiconductor Processing, 76, pp.31-36.
[7] Shockley, W. and Queisser, H., 2018. Detailed balance limit of efficiency of p–n junction solar cells. In Renewable Energy (pp. Vol2_35-Vol2_54). Routledge.
[8] Tanaka, K., Oonuki, M., Moritake, N. and Uchiki, H., 2009. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Solar Energy Materials and Solar Cells, 93(5), pp.583-587.
[9] Deokate, R.J., Chavan, H.S., Im, H. and Inamdar, A.I., 2022. Spray-deposited kesterite Cu2ZnSnS4 (CZTS): Optical, structural, and electrical investigations for solar cell applications. Ceramics International, 48(1), pp.795-802.
[10] Wibowo, R.A., 2018. Powder-to-film approach for fabricating critical raw material-free kesterite Cu2ZnSn (S, Se) 4 thin film photovoltaic: A review. Solar Energy, 176, pp.157-169.
[11] Wright, L.D., Lowe, J.C., Bliss, M., Tsai, V., Togay, M., Betts, T.R., Walls, J.M., Malkov, A.V. and Bowers, J.W., 2019. Water based spray pyrolysis of metal-oxide solutions for Cu2ZnSn (S, Se) 4 solar cells using low toxicity amine/thiol complexants. Thin Solid Films, 669, pp.588-594.
[12] Bruc, L.I., Guc, M., Rusu, M., Sherban, D.A., Simashkevich, A.V., Shorr, S., Izquierdo-Roca, V., Pérez-Rodríguez, A. and Arushanov, E.K., 2012. Kesterite thin films of Cu2ZnSnS4 obtained by spray pyrolysis. In Proceedings of 27th European Photovoltaic Solar Energy Conference and Exhibition (pp. 2763-2766).
[13] Wang, K., Gunawan, O., Todorov, T., Shin, B., Chey, S.J., Bojarczuk, N.A., Mitzi, D. and Guha, S., 2010. Thermally evaporated Cu2ZnSnS4 solar cells. Applied Physics Letters, 97(14).
[14] Xie, M., Zhuang, D., Zhao, M., Zhuang, Z., Ouyang, L., Li, X. and Song, J., 2013. Preparation and characterization of Cu 2 ZnSnS 4 thin films and solar cells fabricated from quaternary Cu-Zn-Sn-S target. International Journal of Photoenergy, 2013.
[15] Singh, O.P., Muhunthan, N., Singh, V.N., Samanta, K. and Dilawar, N., 2014. Effect of temperature on thermal expansion and anharmonicity in Cu2ZnSnS4 thin films grown by co-sputtering and sulfurization. Materials Chemistry and Physics, 146(3), pp.452-455.
[16] Yeh, M.Y., Lee, C.C. and Wuu, D.S., 2009. Influences of synthesizing temperatures on the properties of Cu 2 ZnSnS 4 prepared by sol–gel spin-coated deposition. Journal of sol-gel science and technology, 52, pp.65-68.
[17] Kumar, S., Singh, P.K. and Chilana, G.S., 2009. Study of silicon solar cell at different intensities of illumination and wavelengths using impedance spectroscopy. Solar Energy Materials and Solar Cells, 93(10), pp.1881-1884.
[18] Kumar, Y.K., Bhaskar, P.U., Babu, G.S. and Raja, V.S., 2010. Effect of copper salt and thiourea concentrations on the formation of Cu2ZnSnS4 thin films by spray pyrolysis. physica status solidi (a), 207(1), pp.149-156.
[19] Nakayama, N. and Ito, K., 1996. Sprayed films of stannite Cu2ZnSnS4. Applied Surface Science, 92, pp.171-175.
[20] Kumar, Y.K., Babu, G.S., Bhaskar, P.U. and Raja, V.S., 2009. Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 93(8), pp.1230-1237.
[21] Kameyama, T., Osaki, T., Okazaki, K.I., Shibayama, T., Kudo, A., Kuwabata, S. and Torimoto, T., 2010. Preparation and photoelectrochemical properties of densely immobilized Cu 2 ZnSnS 4 nanoparticle films. Journal of Materials Chemistry, 20(25), pp.5319-5324.
[22] Stanchik, A.V., Gremenok, V.F., Juskenas, R., Tyukhov, I.I., Tivanov, M.S., Fettkenhauer, C., Shvartsman, V.V., Giraitis, R., Hagemann, U. and Lupascu, D.C., 2019. Effects of selenization time and temperature on the growth of Cu2ZnSnSe4 thin films on a metal substrate for flexible solar cells. Solar Energy, 178, pp.142-149.
[23] Park, H., Hwang, Y.H. and Bae, B.S., 2013. Sol–gel processed Cu 2 ZnSnS 4 thin films for a photovoltaic absorber layer without sulfurization. Journal of sol-gel science and technology, 65, pp.23-27.
[24] Ko, B.S., Kim, J.S., Jeon, D.H., Kang, J.K. and Hwang, D.K., 2018. Effects of back annealing on the structural and electrical properties of Cu2ZnSnSe4 thin films grown by a modified two-step process. Science of Advanced Materials, 10(4), pp.580-585.
[25] Benaicha, M., Hamla, M. and Derbal, S., 2016. Electrochemical formation and selenization of ternary CuZnSn alloys for growing Cu2ZnSnSe4 photoactive thin films. International Journal of Electrochemical Science, 11(6), pp.4909-4921.
[26] Abusnina, M., Moutinho, H., Al-Jassim, M., DeHart, C. and Matin, M., 2014. Fabrication and characterization of CZTS thin films prepared by the sulfurization of RF-sputtered
stacked metal precursors. Journal of electronic materials, 43, pp.3145-3154.