[1] Minbashi, M. and Yazdani, E., 2022. Effect of Cation and anion migration toward contacts on Perovskite solar cell performance. Progress in Physics of Applied Materials, 2(2), pp.93-102.
[2] Minbashi, M., Ghobadi, A., Ehsani, M.H., Dizaji, H.R. and Memarian, N., 2018. Simulation of high efficiency SnS-based solar cells with SCAPS. solar energy, 176, pp.520-525.
[3] Sahai, S., Jangra, A., Thomas, L.M. and Satsangi, V.R., 2023. Quantum Dots as Efficient Solar Energy Absorber: Review on Photovoltaics and Photoelectrochemical Systems. Journal of The Institution of Engineers (India): Series D, pp.1-14.
[4] Ludin, N.A., Mustafa, N.I., Hanafiah, M.M., Ibrahim, M.A., Teridi, M.A.M., Sepeai, S., Zaharim, A. and Sopian, K., 2018. Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renewable and Sustainable Energy Reviews, 96, pp.11-28.
[5] Liu, Z., Lin, C.H., Hyun, B.R., Sher, C.W., Lv, Z., Luo, B., Jiang, F., Wu, T., Ho, C.H., Kuo, H.C. and He, J.H., 2020. Micro-light-emitting diodes with quantum dots in display technology. Light: Science & Applications, 9(1), p.83.
[6] Lohse, S.E. and Murphy, C.J., 2012. Applications of colloidal inorganic nanoparticles: from medicine to energy. Journal of the American Chemical Society, 134(38), pp.15607-15620.
Shen, Y.J. and Lee, Y.L., 2008. Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications. Nanotechnology, 19(4), p.045602.
[8] Jun, H.K., Careem, M.A. and Arof, A.K., 2013. Quantum dot-sensitized solar cells—perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renewable and Sustainable Energy Reviews, 22, pp.148-167.
[9] Yang, Z., Chen, C.Y., Roy, P. and Chang, H.T., 2011. Quantum dot-sensitized solar cells incorporating nanomaterials. Chemical Communications, 47(34), pp.9561-9571.
[10] Hanna, M.C. and Nozik, A.J., 2006. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. Journal of Applied Physics, 100(7).
[11] Kamat, P.V., 2013. Quantum dot solar cells. The next big thing in photovoltaics. The journal of physical chemistry letters, 4(6), pp.908-918.
[12] Kwon, Y.T., Choi, Y.M., Kim, K.H., Lee, C.G., Lee, K.J., Kim, B.S. and Choa, Y.H., 2014. Synthesis of CdSe/ZnSe quantum dots passivated with a polymer for oxidation prevention. Surface and Coatings Technology, 259, pp.83-86.
[13] Zhang, J., Li, C., Li, J. and Peng, X., 2023. Synthesis of CdSe/ZnSe Core/Shell and CdSe/ZnSe/ZnS Core/Shell/Shell Nanocrystals: Surface-Ligand Strain and CdSe–ZnSe Lattice Strain. Chemistry of Materials, 35(17), pp.7049-7059.
[14] Jin, N., Sun, Y., Shi, W., Wang, P., Nagaoka, Y., Cai, T., Wu, R., Dube, L., Nyiera, H.N., Liu, Y. and Mani, T., 2023. Type-I CdS/ZnS Core/Shell Quantum Dot-Gold Heterostructural Nanocrystals for Enhanced Photocatalytic Hydrogen Generation. Journal of the American Chemical Society, 145(40), pp.21886-21896.
[15] Zhang, X., Xu, M., YUb, C.H.U.N.M.A.N., LUb, H.A.O., YUb, Y.A.O.T.I.A.N. and XUa, X.I.A.O.N.A.N., 2015. Low temperature aqueous phase synthesis and optical property study of ZnSe/ZnS core/shell quantum dots. Optoelectronics and Advanced Materials-Rapid Communications, 9(July-August 2015), pp.924-929.
[16] Krobkrong, N., Uematsu, T., Torimoto, T. and Kuwabata, S., 2023. Emission tuning of AgInS2-based core/shell semiconductor quantum dots with type-II and quasi-type-II band alignments. Japanese Journal of Applied Physics, 62(6), p.061003.
[17] Liu, J., Yue, S., Zhang, H., Wang, C., Barba, D., Vidal, F., Sun, S., Wang, Z.M., Bao, J., Zhao, H. and Selopal, G.S., 2023. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly “Giant” InP/ZnSe Core/Shell Quantum Dots. ACS Applied Materials & Interfaces, 15(29), pp.34797-34808. [18] Acharya, K.P., Nguyen, H.M., Paulite, M., Piryatinski, A., Zhang, J., Casson, J.L., Xu, H., Htoon, H. and Hollingsworth, J.A., 2015. Elucidation of two giants: challenges to thick-shell synthesis in CdSe/ZnSe and ZnSe/CdS core/shell quantum dots. Journal of the American Chemical Society, 137(11), pp.3755-3758.
[19] Yahia-Ammar, A., Nonat, A.M., Boos, A., Rehspringer, J.L., Asfari, Z. and Charbonnière, L.J., 2014. Thin-coated water soluble CdTeS alloyed quantum dots as energy
donors for highly efficient FRET. Dalton Transactions, 43(41), pp.15583-15592.
[20] Adegoke, O., Nyokong, T. and Forbes, P.B., 2015. Structural and optical properties of alloyed quaternary CdSeTeS core and CdSeTeS/ZnS core–shell quantum dots. Journal of Alloys and Compounds, 645, pp.443-449.
[21] Sahu, J., Prusty, D., Mansingh, S. and Parida, K., 2023. A review on alloyed quantum dots and their applications as photocatalysts. International Journal of Hydrogen Energy.
[22] Siffalovic, P., Badanova, D., Vojtko, A., Jergel, M., Hodas, M., Pelletta, M., Sabol, D., Macha, M. and Majkova, E., 2015. Evaluation of low-cadmium ZnCdSeS alloyed quantum dots for remote phosphor solid-state lighting technology. Applied Optics, 54(23), pp.7094-7098.
[23] Carey, G.H., Levina, L., Comin, R., Voznyy, O. and Sargent, E.H., 2015. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot‐to‐dot surface passivation. Advanced Materials, 27(21), pp.3325-3330.
[24] Zhao, K., Pan, Z., Mora-Seró, I., Cánovas, E., Wang, H., Song, Y., Gong, X., Wang, J., Bonn, M., Bisquert, J. and Zhong, X., 2015. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. Journal of the American Chemical Society, 137(16), pp.5602-5609.
[25] Mousavi-Kamazani, M., Salavati-Niasari, M., Hosseinpour-Mashkani, S.M. and Goudarzi, M., 2015. Synthesis and characterization of CuInS2 quantum dot in the presence of novel precursors and its application in dyes solar cells. Materials Letters, 145, pp.99-103.
[26] Guo, F., He, J., Li, J., Wu, W., Hang, Y. and Hua, J., 2013. Photovoltaic performance of bithiazole-bridged dyes-sensitized solar cells employing semiconducting quantum dot CuInS2 as barrier layer material. Journal of colloid and interface science, 408, pp.59-65.
[27] Lv, M., Zhu, J., Huang, Y., Li, Y., Shao, Z., Xu, Y. and Dai, S., 2015. Colloidal CuInS2 quantum dots as inorganic hole-transporting material in perovskite solar cells. ACS Applied Materials & Interfaces, 7(31), pp.17482-17488.
[28] Yue, W., Xie, Z., Pan, Y., Zhang, G., Wang, S., Xu, F., Yao, C., Hu, L., Li, D., Yang, X. and Song, Q., 2015. Improved Device Performance of Polymer-CuInS2/TiO2 Solar Cells Based on Treated CuInS2 Quantum Dots. Journal of Electronic Materials, 44, pp.3294-3301.
[29] Gardelis, S. and Nassiopoulou, A.G., 2014. Evidence of significant down-conversion in a Si-based solar cell using CuInS2/ZnS core shell quantum dots. Applied Physics Letters, 104(18).
[30] Peng, Z., Liu, Y., Zhao, Y., Chen, K., Cheng, Y., Kovalev, V. and Chen, W., 2014. ZnSe passivation layer for the efficiency enhancement of CuInS2 quantum dots sensitized solar cells. Journal of alloys and compounds, 587, pp.613-617.
[31] Chang, J.Y., Lin, J.M., Su, L.F. and Chang, C.F., 2013. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture. ACS applied materials & interfaces, 5(17), pp.8740-8752.
[32] Luo, J., Wei, H., Huang, Q., Hu, X., Zhao, H., Yu, R., Li, D., Luo, Y. and Meng, Q., 2013. Highly efficient core–shell CuInS2–Mn doped CdS quantum dot sensitized solar cells. Chemical Communications, 49(37), pp.3881-3883.
[33] Pan, Z., Mora-Seró, I., Shen, Q., Zhang, H., Li, Y., Zhao, K., Wang, J., Zhong, X. and Bisquert, J., 2014. High-efficiency “green” quantum dot solar cells. Journal of the American Chemical Society, 136(25), pp.9203-9210.
[34] Chen, B., Zhong, H., Zhang, W., Tan, Z.A., Li, Y., Yu, C., Zhai, T., Bando, Y., Yang, S. and Zou, B., 2012. Highly emissive and color‐tunable CuInS2‐based colloidal semiconductor nanocrystals: off‐stoichiometry effects and improved electroluminescence performance. Advanced Functional Materials, 22(10), pp.2081-2088.
[35] Uehara, M., Watanabe, K., Tajiri, Y., Nakamura, H. and Maeda, H., 2008. Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect. The Journal of chemical physics, 129(13).
[36] Kim, Y.K., Ahn, S.H., Chung, K., Cho, Y.S. and Choi, C.J., 2012. The photoluminescence of CuInS2 nanocrystals: effect of non-stoichiometry and surface modification. Journal of Materials Chemistry, 22(4), pp.1516-1520.
[37] Li, L., Pandey, A., Werder, D.J., Khanal, B.P., Pietryga, J.M. and Klimov, V.I., 2011. Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. Journal of the American Chemical Society, 133(5), pp.1176-1179.
[38] Zhang, W. and Zhong, X., 2011. Facile synthesis of ZnS− CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst. Inorganic chemistry, 50(9), pp.4065-4072.
[39] Park, J. and Kim, S.W., 2011. CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. Journal of Materials Chemistry, 21(11), pp.3745-3750.
[40] Li, T.L., Lee, Y.L. and Teng, H., 2011. CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells. Journal of Materials Chemistry, 21(13), pp.5089-5098.
[41] Hu, X., Zhang, Q., Huang, X., Li, D., Luo, Y. and Meng, Q., 2011. Aqueous colloidal CuInS2 for quantum dot sensitized solar cells. Journal of Materials Chemistry, 21(40), pp.15903-15905.
[42] McDaniel, H., Fuke, N., Makarov, N.S., Pietryga, J.M. and Klimov, V.I., 2013. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells. Nature communications, 4(1), p.2887.
[43] Tang, J., Kemp, K.W., Hoogland, S., Jeong, K.S., Liu, H., Levina, L., Furukawa, M., Wang, X., Debnath, R., Cha, D. and Chou, K.W., 2011. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature materials, 10(10), pp.765-771.
[44] Ip, A.H., Thon, S.M., Hoogland, S., Voznyy, O., Zhitomirsky, D., Debnath, R., Levina, L., Rollny, L.R., Carey, G.H., Fischer, A. and Kemp, K.W., 2012. Hybrid passivated colloidal quantum dot solids. Nature nanotechnology, 7(9), pp.577-582.
[45] Huang, J., Xu, B., Yuan, C., Chen, H., Sun, J., Sun, L. and Ågren, H., 2014. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation. ACS applied materials & interfaces, 6(21), pp.18808-18815.
[46] Li, W. and Zhong, X., 2015. Capping ligand-induced self-assembly for quantum dot sensitized solar cells. The journal of physical chemistry letters, 6(5), pp.796-806.
[47] Sun, J. Zhao, J. and Masumoto, Y., 2013. Shell-thickness-dependent photoinduced electron transfer from CuInS2/ZnS quantum dots to TiO2 films. Applied physics letters, 102(5).