Chitosan - Carbon Nanotube - Maghemite nanocomposites – A Flexible Negative Dielectric Constant Material

Document Type : Original Article

Authors

1 Department of Physics, Bharath Institute of Higher Education and Research, Chennai - 600 073

2 Department of Physics Anna University, CEG Campus, Chennai - 600 025

Abstract

In this work, the nanocomposites of chitosan containing carbon nanotubes (CNT) and maghemite nanoparticles have been prepared by solution casting method. Techniques such as Raman spectroscopy, SEM, TEM, dielectric relaxation spectroscopy, and VSM studies were made.  The incorporation of CNT in to the chitosan matrix and also the interaction between the CNT and the maghemite nanoparticles were studied using Raman spectroscopy. The dielectric constant of Chitosan-CNT composites turned from positive to negative at low frequency when CNT concentration increased from 10 to 20wt%. Interestingly, addition of 20wt% of maghemite nanoparticles into the Cs-CNT nanocomposites affected both the dielectric property and the conductivity of the composite. VSM measurement shows that the prepared maghemite nanoparticles and the Cs-CNT-maghemite nanocomposites are superparamagnetic materials. Observed dielectric characteristics and the electrical conductivity of the samples have been explained by using a model. Tuning of negative permittivity in the chitosan-CNT nanocomposites by using maghemite nanoparticles could be useful as metamaterials.

Keywords

Main Subjects


© 2023 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Smith, D.R., Pendry, J.B. and Wiltshire, M.C., 2004. Metamaterials and negative refractive index. science, 305(5685), pp.788-792.
[2] Hoffman, A.J., Alekseyev, L., Howard, S.S., Franz, K.J., Wasserman, D., Podolskiy, V.A., Narimanov, E.E., Sivco, D.L. and Gmachl, C., 2007. Negative refraction in semiconductor metamaterials. Nature materials, 6(12), pp.946-950.
[3] Pendry, J.B., Holden, A.J., Stewart, W.J. and Youngs, I., 1996. Extremely low frequency plasmons in metallic mesostructures. Physical review letters, 76(25), p.4773.
[4] Dolgov, O.V., Kirzhnits, D.A. and Maksimov, E.G., 1981. On an admissible sign of the static dielectric function of matter. Reviews of Modern Physics, 53(1), p.81.
[5] Cai, W., Chettiar, U.K., Kildishev, A.V. and Shalaev, V.M., 2007. Optical cloaking with metamaterials. Nature photonics, 1(4), pp.224-227.
[6] Rockstuhl, C. and Lederer, F., 2007. Negative-index metamaterials from nanoapertures. Physical Review B, 76(12), p.125426.
[7] Guo, J., Gu, H., Wei, H., Zhang, Q., Haldolaarachchige, N., Li, Y., Young, D.P., Wei, S. and Guo, Z., 2013. Magnetite–polypyrrole metacomposites: dielectric properties and magnetoresistance behavior. The Journal of Physical Chemistry C, 117(19), pp.10191-10202.
[8] Zhang, Y., Yuan, S., Zhou, W., Xu, J. and Li, Y., 2007. Spectroscopic evidence and molecular simulation investigation of the π–π interaction between pyrene molecules and carbon nanotubes. Journal of nanoscience and nanotechnology, 7(7), pp.2366-2375.
[9] Lau, C., Cooney, M.J. and Atanassov, P., 2008. Conductive macroporous composite chitosan− carbon nanotube scaffolds. Langmuir, 24(13), pp.7004-7010.
[10] Kwon, J. and Kim, H., 2005. Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid‐treated multiwalled carbon nanotube composites prepared by in situ polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 43(17), pp.3973-3985.
[11] Coleman, J.N., Khan, U. and Gun'ko, Y.K., 2006. Mechanical reinforcement of polymers using carbon nanotubes. Advanced materials, 18(6), pp.689-706.
[12] Sui, G., Li, B., Bratzel, G., Baker, L., Zhong, W.H. and Yang, X.P., 2009. Carbon nanofiber/polyetherimide composite membranes with special dielectric properties. Soft Matter, 5(19), pp.3593-3598.
[13] Kumar, M.N.R., 2000. A review of chitin and chitosan applications. Reactive and functional polymers, 46(1), pp.1-27.
[14] Suginta, W., Khunkaewla, P. and Schulte, A., 2013. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chemical reviews, 113(7), pp.5458-5479.
[15] Takahashi, T., Luculescu, C.R., Uchida, K., Ishii, T. and Yajima, H., 2005. Dispersion behavior and spectroscopic properties of single-walled carbon nanotubes in chitosan acidic aqueous solutions. Chemistry letters, 34(11), pp.1516-1517.
[16] Furtado, C.A., Kim, U.J., Gutierrez, H.R., Pan, L., Dickey, E.C. and Eklund, P.C., 2004. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. Journal of the American Chemical Society, 126(19), pp.6095-6105.
[17] Hu, Y., Chen, W., Lu, L., Liu, J. and Chang, C., 2010. Electromechanical actuation with controllable motion based on a single-walled carbon nanotube and natural biopolymer composite. ACS nano, 4(6), pp.3498-3502.
[18] Sun, S., Murray, C.B., Weller, D., Folks, L. and Moser, A., 2000. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. science, 287(5460), pp.1989-1992.
[19] Lu, A.H., Salabas, E.E. and Schüth, F., 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46(8), pp.1222-1244.
[20] Kavas, H.Ü.S.E.Y.İ.N., Günay, M., Baykal, A., Toprak, M.S., Sozeri, H. and Aktaş, B., 2013. Negative permittivity of polyaniline–Fe3O4 nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials, 23, pp.306-314.
[21] Lee, S.J., Jeong, J.R., Shin, S.C., Kim, J.C. and Kim, J.D., 2004. Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique. Journal of Magnetism and Magnetic Materials, 282, pp.147-150.
[22] Lee, K.J., An, J.H., Shin, J.S., Kim, D.H., Kim, C., Ozaki, H. and Koh, J.G., 2007. Protective effect of maghemite nanoparticles on ultraviolet-induced photo-damage in
human skin fibroblasts. Nanotechnology, 18(46), p.465201.
[23] Kong, L., Yin, X., Zhang, Y., Yuan, X., Li, Q., Ye, F., Cheng, L. and Zhang, L., 2013. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. The Journal of Physical Chemistry C, 117(38), pp.19701-19711.
[24] Yang, C., Lin, Y. and Nan, C.W., 2009. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon, 47(4), pp.1096-1101.
[25] Marroquin, J.B., Rhee, K.Y. and Park, S.J., 2013. Chitosan nanocomposite films: Enhanced electrical conductivity, thermal stability, and mechanical properties. Carbohydrate polymers, 92(2), pp.1783-1791.
[26] Zhu, J., Luo, Z., Wu, S., Haldolaarachchige, N., Young, D.P., Wei, S. and Guo, Z., 2012. Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity. Journal of Materials Chemistry, 22(3), pp.835-844.
[27] Cheng, M., Yang, R., Zhang, L., Shi, Z., Yang, W., Wang, D., Xie, G., Shi, D. and Zhang, G., 2012. Restoration of graphene from graphene oxide by defect repair. Carbon, 50(7), pp.2581-2587.
[28] Zhang, W., Li, X., Zou, R., Wu, H., Shi, H., Yu, S. and Liu, Y., 2015. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites. Scientific reports, 5(1), p.11129.
[29] Tamura, R., Lim, E., Manaka, T. and Iwamoto, M., 2006. Analysis of pentacene field effect transistor as a Maxwell-Wagner effect element. Journal of applied physics, 100(11).
[30] Gevorgian, S.S., Tagantsev, A.K. and Vorobiev, A.K., 2013. Tuneable film bulk acoustic wave resonators (p. 2). London: Springer.
[31] Yakuphanoglu, F., 2007. Electrical conductivity and electrical modulus properties of α, ω-dihexylsexithiophene organic semiconductor. Physica B: Condensed Matter, 393(1-2), pp.139-142.
[32] Ramajo, L., Reboredo, M. and Castro, M., 2005. Dielectric response and relaxation phenomena in composites of epoxy resin with BaTiO3 particles. Composites Part A: Applied science and manufacturing, 36(9), pp.1267-1274.
[33] Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., Tang, B., Chan, M. and Kim, J.K., 2014. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high‐performance electromagnetic interference shielding. Advanced Materials, 26(31), pp.5480-5487.
[34] Efros, A.L. and Shklovskii, B.I., 1976. Critical behaviour of conductivity and dielectric constant near the metal‐non‐metal transition threshold. Physica status solidi (b), 76(2), pp.475-485.
[35] Chen, Y. and Gu, H., 2012. Microwave assisted fast fabrication of Fe3O4-MWCNTs nanocomposites and their application as MRI contrast agents. Materials Letters, 67(1), pp.49-51.
[36] Millan, A., Urtizberea, A., Silva, N.J.O., Palacio, F., Amaral, V.S., Snoeck, E. and Serin, V., 2007. Surface effects in maghemite nanoparticles. Journal of magnetism and magnetic materials, 312(1), pp.L5-L9.
[37] Rozman, M. and Drofenik, M., 1995. Hydrothermal synthesis of manganese zinc ferrites. Journal of the American Ceramic Society, 78(9), pp.2449-2455.
[38] Bhatt, A.S., Bhat, D.K., Santosh, M.S. and Tai, C.W., 2011. Chitosan/NiO nanocomposites: a potential new dielectric material. Journal of Materials Chemistry, 21(35), pp.13490-13497.