[1] Smith, D.R., Pendry, J.B. and Wiltshire, M.C., 2004. Metamaterials and negative refractive index. science, 305(5685), pp.788-792.
[2] Hoffman, A.J., Alekseyev, L., Howard, S.S., Franz, K.J., Wasserman, D., Podolskiy, V.A., Narimanov, E.E., Sivco, D.L. and Gmachl, C., 2007. Negative refraction in semiconductor metamaterials. Nature materials, 6(12), pp.946-950.
[3] Pendry, J.B., Holden, A.J., Stewart, W.J. and Youngs, I., 1996. Extremely low frequency plasmons in metallic mesostructures. Physical review letters, 76(25), p.4773.
[4] Dolgov, O.V., Kirzhnits, D.A. and Maksimov, E.G., 1981. On an admissible sign of the static dielectric function of matter. Reviews of Modern Physics, 53(1), p.81.
[5] Cai, W., Chettiar, U.K., Kildishev, A.V. and Shalaev, V.M., 2007. Optical cloaking with metamaterials. Nature photonics, 1(4), pp.224-227.
[6] Rockstuhl, C. and Lederer, F., 2007. Negative-index metamaterials from nanoapertures. Physical Review B, 76(12), p.125426.
[7] Guo, J., Gu, H., Wei, H., Zhang, Q., Haldolaarachchige, N., Li, Y., Young, D.P., Wei, S. and Guo, Z., 2013. Magnetite–polypyrrole metacomposites: dielectric properties and magnetoresistance behavior. The Journal of Physical Chemistry C, 117(19), pp.10191-10202.
[8] Zhang, Y., Yuan, S., Zhou, W., Xu, J. and Li, Y., 2007. Spectroscopic evidence and molecular simulation investigation of the π–π interaction between pyrene molecules and carbon nanotubes. Journal of nanoscience and nanotechnology, 7(7), pp.2366-2375.
[9] Lau, C., Cooney, M.J. and Atanassov, P., 2008. Conductive macroporous composite chitosan− carbon nanotube scaffolds. Langmuir, 24(13), pp.7004-7010.
[10] Kwon, J. and Kim, H., 2005. Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid‐treated multiwalled carbon nanotube composites prepared by in situ polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 43(17), pp.3973-3985.
[11] Coleman, J.N., Khan, U. and Gun'ko, Y.K., 2006. Mechanical reinforcement of polymers using carbon nanotubes. Advanced materials, 18(6), pp.689-706.
[12] Sui, G., Li, B., Bratzel, G., Baker, L., Zhong, W.H. and Yang, X.P., 2009. Carbon nanofiber/polyetherimide composite membranes with special dielectric properties. Soft Matter, 5(19), pp.3593-3598.
[13] Kumar, M.N.R., 2000. A review of chitin and chitosan applications. Reactive and functional polymers, 46(1), pp.1-27.
[14] Suginta, W., Khunkaewla, P. and Schulte, A., 2013. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chemical reviews, 113(7), pp.5458-5479.
[15] Takahashi, T., Luculescu, C.R., Uchida, K., Ishii, T. and Yajima, H., 2005. Dispersion behavior and spectroscopic properties of single-walled carbon nanotubes in chitosan acidic aqueous solutions. Chemistry letters, 34(11), pp.1516-1517.
[16] Furtado, C.A., Kim, U.J., Gutierrez, H.R., Pan, L., Dickey, E.C. and Eklund, P.C., 2004. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. Journal of the American Chemical Society, 126(19), pp.6095-6105.
[17] Hu, Y., Chen, W., Lu, L., Liu, J. and Chang, C., 2010. Electromechanical actuation with controllable motion based on a single-walled carbon nanotube and natural biopolymer composite. ACS nano, 4(6), pp.3498-3502.
[18] Sun, S., Murray, C.B., Weller, D., Folks, L. and Moser, A., 2000. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. science, 287(5460), pp.1989-1992.
[19] Lu, A.H., Salabas, E.E. and Schüth, F., 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46(8), pp.1222-1244.
[20] Kavas, H.Ü.S.E.Y.İ.N., Günay, M., Baykal, A., Toprak, M.S., Sozeri, H. and Aktaş, B., 2013. Negative permittivity of polyaniline–Fe3O4 nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials, 23, pp.306-314.
[21] Lee, S.J., Jeong, J.R., Shin, S.C., Kim, J.C. and Kim, J.D., 2004. Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique. Journal of Magnetism and Magnetic Materials, 282, pp.147-150.
[22] Lee, K.J., An, J.H., Shin, J.S., Kim, D.H., Kim, C., Ozaki, H. and Koh, J.G., 2007. Protective effect of maghemite nanoparticles on ultraviolet-induced photo-damage in
human skin fibroblasts. Nanotechnology, 18(46), p.465201.
[23] Kong, L., Yin, X., Zhang, Y., Yuan, X., Li, Q., Ye, F., Cheng, L. and Zhang, L., 2013. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. The Journal of Physical Chemistry C, 117(38), pp.19701-19711.
[24] Yang, C., Lin, Y. and Nan, C.W., 2009. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon, 47(4), pp.1096-1101.
[25] Marroquin, J.B., Rhee, K.Y. and Park, S.J., 2013. Chitosan nanocomposite films: Enhanced electrical conductivity, thermal stability, and mechanical properties. Carbohydrate polymers, 92(2), pp.1783-1791.
[26] Zhu, J., Luo, Z., Wu, S., Haldolaarachchige, N., Young, D.P., Wei, S. and Guo, Z., 2012. Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity. Journal of Materials Chemistry, 22(3), pp.835-844.
[27] Cheng, M., Yang, R., Zhang, L., Shi, Z., Yang, W., Wang, D., Xie, G., Shi, D. and Zhang, G., 2012. Restoration of graphene from graphene oxide by defect repair. Carbon, 50(7), pp.2581-2587.
[28] Zhang, W., Li, X., Zou, R., Wu, H., Shi, H., Yu, S. and Liu, Y., 2015. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites. Scientific reports, 5(1), p.11129.
[29] Tamura, R., Lim, E., Manaka, T. and Iwamoto, M., 2006. Analysis of pentacene field effect transistor as a Maxwell-Wagner effect element. Journal of applied physics, 100(11).
[30] Gevorgian, S.S., Tagantsev, A.K. and Vorobiev, A.K., 2013. Tuneable film bulk acoustic wave resonators (p. 2). London: Springer.
[31] Yakuphanoglu, F., 2007. Electrical conductivity and electrical modulus properties of α, ω-dihexylsexithiophene organic semiconductor. Physica B: Condensed Matter, 393(1-2), pp.139-142.
[32] Ramajo, L., Reboredo, M. and Castro, M., 2005. Dielectric response and relaxation phenomena in composites of epoxy resin with BaTiO3 particles. Composites Part A: Applied science and manufacturing, 36(9), pp.1267-1274.
[33] Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., Tang, B., Chan, M. and Kim, J.K., 2014. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high‐performance electromagnetic interference shielding. Advanced Materials, 26(31), pp.5480-5487.
[34] Efros, A.L. and Shklovskii, B.I., 1976. Critical behaviour of conductivity and dielectric constant near the metal‐non‐metal transition threshold. Physica status solidi (b), 76(2), pp.475-485.
[35] Chen, Y. and Gu, H., 2012. Microwave assisted fast fabrication of Fe3O4-MWCNTs nanocomposites and their application as MRI contrast agents. Materials Letters, 67(1), pp.49-51.
[36] Millan, A., Urtizberea, A., Silva, N.J.O., Palacio, F., Amaral, V.S., Snoeck, E. and Serin, V., 2007. Surface effects in maghemite nanoparticles. Journal of magnetism and magnetic materials, 312(1), pp.L5-L9.
[37] Rozman, M. and Drofenik, M., 1995. Hydrothermal synthesis of manganese zinc ferrites. Journal of the American Ceramic Society, 78(9), pp.2449-2455.
[38] Bhatt, A.S., Bhat, D.K., Santosh, M.S. and Tai, C.W., 2011. Chitosan/NiO nanocomposites: a potential new dielectric material. Journal of Materials Chemistry, 21(35), pp.13490-13497.