[1] Depuydt, B., Theuwis, A. and Romandic, I., 2006. Germanium: From the first application of Czochralski crystal growth to large diameter dislocation-free wafers. Materials Science in Semiconductor Processing, 9(4-5), pp.437-443.
[2] Patidar, B., M. Hussain, M., Jha, S.K., Sharma, A. and Tiwari, A.P., 2017. Analytical, numerical and experimental analysis of induction heating of graphite crucible for melting of nonâmagnetic materials. IET Electric Power Applications, 11(3), pp.342-351.
[3] Miller, W., Abrosimov, N., Fischer, J., Gybin, A., Juda, U., Kayser, S. and Janicskó-Csáthy, J., 2019. Quasi-transient calculation of Czochralski growth of Ge crystals using the software elmer. Crystals, 10(1), p.18.
[4] Gresho, P.M. and Derby, J.J., 1987. A finite element model for induction heating of a metal crucible. Journal of crystal growth, 85(1-2), pp.40-48.
[5] Derby, J.J., Atherton, L.J. and Gresho, P.M., 1989. An integrated process model for the growth of oxide crystals by the Czochralski method. Journal of crystal growth, 97(3-4), pp.792-826.
[6] Chen, Q.S., Zhang, H., Prasad, V., Balkas, C.M. and Yushin, N.K., 2001. Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals. J. Heat Transfer, 123(6), pp.1098-1109. [7] Jing, C.J., Kobayashi, M., Tsukada, T., Hozawa, M., Fukuda, T., Imaishi, N., Shimamura, K. and Ichinose, N., 2003. Effect of RF coil position on spoke pattern on oxide melt surface in Czochralski crystal growth. Journal of crystal growth, 252(4), pp.550-559.
[8] Du, D.X. and Munakata, T., 2005. Temperature distribution in an inductively heated CZ crucible. Journal of crystal growth, 283(3-4), pp.563-575.
[9] Kirpo, M., 2013. Global simulation of the Czochralski silicon crystal growth in ANSYS FLUENT. Journal of crystal growth, 371, pp.60-69.
[10] Tavakoli, M.H., Renani, E.K., Honarmandnia, M. and Ezheiyan, M., 2018. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal. Journal of Crystal Growth, 483, pp.125-133.
[11] Saadatirad, M., Tavakoli, M.H., Khodamoradi, H. and Masharian, S.R., 2021. Effect of the pulling, crystal and crucible rotation rate on the thermal stress and the melt–crystal interface in the Czochralski growth of
germanium crystals. CrystEngComm, 23(39), pp.6967-6976.
[12] Semiatin, S.L., 1988. Elements of induction heating: design, control, and applications. Asm International.
[13] Rudnev, V., Loveless, D. and Cook, R.L., 2017. Handbook of induction heating. CRC press.
[14] Leatherman, A.F. and Stutz, D.E., 1969. Induction Heating Advances: Applications to 5800° F (Vol. 5071). Technology Utilization Division, National Aeronautics and Space Administration.
[15] Tavakoli, M.H. and Karbaschi, H., 2021. Numerical study of influences of the input current frequency on the induction heating process. Progress in Physics of Applied Materials, 1(1), pp.44-49.
[16] Tavakoli, M.H., Karbaschi, H. and Samavat, F., 2009. Computational modeling of induction heating process. Progress in Electromagnetics research letters, 11, pp.93-102.