[1] M. Bellardita, A. Di, B. Megna, L. Palmisano, " Environmental Absolute crystallinity and photocatalytic activity of brookite TiO2 samples." Applied Catalysis B: Environmental 201 (2017) 150–158.
[2] A. Mohammad, M.E. Khan, M.H. Cho, T. Yoon, "Fabrication of binary SnO2/TiO2 nanocomposites under a sonication-assisted approach: Tuning of band-gap and water depollution applications under visible light irradiation." Ceramica International 47 (2021) 15073–15081.
[3] S.A. Darsara, M. Seifi, M.B. Askari, "One-step hydrothermal synthesis of MoS2/ CdS nanocomposite and study of structural, photocatalytic, and optical properties of this nanocomposite." Optik 169 (2018) 249–256.
[4] Y.Fan, X.Xi, Y.Liu, Z.Nie, Q.Zhang, L.Zhao, "Growth mechanism of immobilized WO3 nanostructures in different solvents and their visible-light photocatalytic performance." Journal of Physics and Chemistry of Solids 140 (2020) 109380.
[5] I.M. Szilágyi, B. Fórizs, O. Rosseler, A. Szegedi, P. Németh, "WO3 photocatalysts: Influence of structure and composition." Journal of Catalysis 294 (2012) 119–127.
[6] Z. Jin, P. Hu, W. Xu, J. Zhou, W. Guo, Y. Chen, "Hydrothermal synthesis and gas sensing properties of hybrid WO3 nano-materials using octadecylamine." Journal of Alloys and Compounds 785 (2019) 1047–1055.
[7] Z. Wei, Q. Zhou, J. Wang, W. Zeng, "Hydrothermal synthesis of hierarchical WO3/ NiO porous microsphere with enhanced gas sensing performances." Materials Letters 264 (2020) 127383.
[8] Z.Cai, H.Li, J.Ding, X.Guo, "Chemical Hierarchical flowerlike WO3 nanostructures assembled by porous nanoflakes for enhanced NO gas sensing." Sensors Actuators B: Chemistry 246 (2017) 225–234.
[9] H. Ahmadian, F.S. Tehrani, M. Aliannezhadi, "Hydrothermal synthesis and characterization of WO3 nanostructures: effects of capping agent and pH." Materials Research Express 6 (2019) 105024.
[10] G. Bisht, S. Rayamajhi, "ZnO Nanoparticles: A Promising Anticancer Agent." Nanobiomedicine 3 (2016) 1-9.
[11] S. Wei, J. Zhao, B. Hu, K. Wu, W. Du, M. Zhou, "Hydrothermal synthesis and gas sensing properties of hexagonal and orthorhombic WO3 nanostructures." Ceramica International 43 (2017) 2579–2585.
[12] Q. Hu, J. He, J. Chang, J. Gao, J. Huang, L. Feng, "Needle-Shaped WO3 Nanorods for Triethylamine Gas Sensing." ACS Applied Nano Materials 3 (2020) 9046–9054.
[13] S. Lin, Y. Guo, X. Li, Y. Liu, "Glycine acid-assisted green
hydrothermal synthesis and controlled growth of WO3 nanowires." Materials Letters 152 (2015) 102–104.
[14] A. Sharma, D. Baral, H.B. Bohidar, P.R. Solanki, "Oxalic acid capped iron oxide nanorods as a sensing platform." Chemico-Biological Interactions 238 (2015) 129-137.
[15] M. Ahmadi, J.F. Maxime, R.Y. Guinel, "Synthesis of Tungsten Oxide Nanoparticles using a Hydrothermal Method at Ambient Pressure." Journal of Materials Research 29 (2014) 1424–1430.
[16] L. Li, J. Zhao, Y. Wang, Y. Li, D. Ma, Y. Zhao, S. Hou, "Oxalic acid mediated synthesis of WO3.H2O nanoplates and self-assembled nanoflowers under mild conditions." Journal of Solid State Chemistry 184 (2011) 1661–1665.
[17] F. Mehmood, J. Iqbal, T. Jan, W. Ahmed, Q. Mansoor, S.Z. Ilyas, M. Ismail, I. Ahmad, "Effect of Sn doping on the structural, optical, electrical and anticancer properties of WO3 nanoplates." Ceramica International 42 (2016) 14334–14341.
[18] M. Jamali, F.S. Tehrani, "Thermally stable WO3 nanostructure synthesized by hydrothermal method without using surfactant." Materials Science and Engineering: B 270 (2021) 115221.
[19] R. Rong, L. Wang, "Synthesis of hierarchical hollow nest-like WO3 micro/nanostructures with enhanced visible light-driven photocatalytic activity." Journal of Alloys and Compounds 850 (2021) 156742.
[20] T. Nagyné-Kovács, I.E. Lukács, A. Szabó, K. Hernadi, T. Igricz, K. László, "Effect of pH in the hydrothermal preparation of monoclinic tungsten oxide." Journal of Solid State Chemistry 281 (2020) 1–7.
[21] W. Xu, C. Qiu, J. Zhou, Y. Chen, "Regulation of specific surface area of 3D flower-like WO3 hierarchical structures for gas sensing application." Ceramica International 46 (2020) 11372–11378.
[22] T. Govindaraj, C. Mahendran, V.S. Manikandan, R. Suresh, R. "One-pot synthesis of tungsten oxide nanostructured for enhanced photocatalytic organic dye degradation." Journal of Materials Science: Materials in Electronics 31 (2020) 17535–17549.
[23] S. Yao, F. Qu, G. Wang, X. Wu, "Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors." Journal of Alloys and Compounds 724 (2017) 695–702.
[24] S.S. Mehta, M.S. Tamboli, I.S. Mulla, S.S. Suryavanshi, "Facile hydrothermal synthesis of nanobricks assembled WO3 microflowers and their ethanol sensing properties." Materials Letters 217 (2017) 80–84.
[25] Y. Shen, X. Chen, W. Wang, Y. Gong, S. Chen, J. Liu, D. Wei, D. Meng, X.S an, "Complexing surfactants-mediated hydrothermal synthesis of WO3 microspheres for gas sensing applications." Materials Letters 163 (2016) 150–153.
[26] Y. Yu, W. Zeng, M. Xu, X. Peng, "Hydrothermal synthesis of WO3·H2O with different nanostructures from 0D to 3D and their gas sensing properties." Physica E: Low-dimensional Systems and Nanostructures 79 (2016) 127–132.
[27] V.B. Patil, N.L. Tarwal, S.H. Mujawar, L.S. Mulla, P.S. Walke, S.S. Suryavanshi, "Enhanced NO2 response of hydrothermally grown Ti doped WO3 nanostructures." Journal of Materials Science: Materials in Electronics 28 (2017) 1612–1619.
[28] S. Wei, J. Zhao, B. Hu, K. Wu, W. Du, M. Zhou, "Hydrothermal synthesis and gas sensing properties of hexagonal and orthorhombic WO3 nanostructures." Ceramica International 43 (2017) 2579-2585.
[29] B. Gerand, G. Nowogrocki, "A New Tungsten Trioxide Hydrate, WO3.1/3H2O : Preparation, and Crystallographic Study." Journal of Solid State Chemistry 38 (1981) 312–320.
[30] L. Renuka, K.S. Anantharaju, S.C. Sharma, H. Nagabhushana, Y.S. Vidya, H.P. Nagaswarupa, S.C. Prashantha, "A comparative study on the structural, optical, electrochemical and photocatalytic properties of ZrO2 nanooxide synthesized by different routes." Journal of Alloys and Compounds 695 (2017) 382–395.
[31] E. Taju, F.B. Dejene, R.E. Kroon, "Synthesis, characterization and influence of pH on indium doped zinc oxide nanostructures." Ceramica International 45 (2019) 24269–24278.
[32] M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand, M. Figlarz, "Infrared and Raman study of WO3 tungsten trioxides and WO3.xH2O tungsten trioxide tydrates. Journal of Solid State Chemistry 67 (1987) 235–247.
[33] R.F. Garcia-Sanchez, T. Ahmido, D. Casimir, S. Baliga, P. Misra, "Thermal effects associated with the raman spectroscopy of WO3 gas-sensor materials." The Journal of Physical Chemistry A 117 (2013) 13825–13831.
[34] B. Behera, S. Chandra, "Synthesis of WO3 nanorods by thermal oxidation technique for NO2 gas sensing application." Materials Science in Semiconductor Processing 86 (2018) 79–84.
[35] F. Zheng, M. Zhang, M. Guo, "Controllable preparation of WO3 nanorod arrays by hydrothermal method." Thin Solid Films 534 (2013) 45–53.
[36] M. Jamali, F. Shariatmadar Tehrani, "Effect of synthesis route on the structural and morphological properties of WO3 nanostructures." Materials Science in Semiconductor Processing 107 (2020) 1–6.
[37] M. Dong, Q. Deng, Y. Zhang, T. Hang, M. Li, "Study on the relationship between Cu protrusion behavior and stresses evolution in the through-silicon via characterized by in-situ μ-Raman spectroscopy." Microelectronics Reliability115 (2020) 113949.
[38] C. Vargas-Consuelos, K. Seo, M. Camacho-López, O.A. Graeve, "Correlation between particle size and raman vibrations in WO3 powders." The Journal of Physical Chemistry C 118 (2014) 9531–9537.
[39] D. Meng, G. Wang, X. San, Y. Song, Y. Shen, "Synthesis of WO3 flower-like hierarchical architectures and their sensing properties." Journal of Alloys and Compounds 649 (2015) 731–738.
[40] R. Huirache-Acuña, F. Paraguay-Delgado, M.A. Albiter, J. Lara-Romero, R. Martínez-Sánchez, "Synthesis and characterization of WO3 nanostructures prepared by an aged-hydrothermal method." Materials Characterization 60 (2009) 932–937.
[41] P.Norouzzadeh, K.Mabhouti, M.Golzan, R. Naderali, "Investigation of structural , morphological and optical characteristics of Mn substituted Al-doped ZnO NPs : A Urbach energy and Kramers-Kronig study."
International Journal for Light and Electron Optics204 (2020) 164227.
[42] N.A. Al-balushi, A.T. Kuvarega, S. Karthikeyan, R. Selvaraj, "Thermal and hydrothermal synthesis of WO3 nanostructure and its optical and photocatalytic properties for the degradation of Cephalexin and Nizatidine in aqueous solution." Materials Science and Engineering: B 264 (2021) 114991.
[43] M. Parthibavarman, M. Karthik, S. Prabhakaran, "Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material." Vacum 155 (2018) 224-232.
[44] V.A. Online, J. Li, J. Zhu, X. Liu, "Synthesis, characterization and enhanced gas sensing performance of WO3 nanotube bundles." New Journal of Chemistry 12 (2013) 4241–4249.
[45] L. Maria, A. Rougier, A. Duta, "Comparative investigation of the Ti and Mo additives influence on the opto-electronic properties of the spray deposited WO3 thin films." Journal of Alloys and Compounds 630 (2015) 133–145.
[46] M. Tsega, F.B. Dejene, "Influence of acidic pH on the formulation of TiO2 nanocrystalline powders with enhanced photoluminescence property." Heliyon 3 (2017) 246.
[47] M. Xu, W. Zeng, F. Yang, L. Chen, "Controllability of assemblage from WO3.H2O nanoplates to nanoflowers with the assistance of oxalic acid." Journal of Materials Science: Materials in Electronics 26 (2015) 6676–6682
[48] P. Shandilya, S. Sambyal, R. Sharma, P. Mandyal, B. Fang, "Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts." Journal of Hazardous Materials 428 (2022) 128218..
[49] H. Liu, L. Duan, K. Xia, Y. Chen, Y. Li, S. Deng, "Microwave Synthesized 2D WO 3 Nanosheets for VOCs Gas Sensors." Nanomaterials 12 (2022) 1–11.
[50] T. Subramani, G. Thimmarayan, B. Balraj, N. Chandrasekar, "Surfactants assisted synthesis of WO3 nanoparticles with improved photocatalytic and antibacterial activity: A strong impact of morphology." Inorganic Chemistry Communications142 (2022) 109709.
[51] Q. Huang, W. Wei, J. Sun, S. Mao, "Hexagonal K2W4O13 Nanowires for the Adsorption of Methylene." ACS Applied Nano Materials 2 (2019) 3802–3812.
[52] A. Chaudhary, D. Pathak, M. Tanwar, R. Dash, B. Joshi, T. Keerthivasan, "Hydrothermally grown nano-WO3 electrochromic film: structural and Raman spectroscopic study." Advances in Materials and Processing Technologies (2020) 1–7.
[53] Z. Wei, Q. Zhou, Z. Lu, L. Xu, Y. Gui, C. Tang, "Morphology controllable synthesis of hierarchical WO3 nanostructures and C2H2 sensing properties." Physica E: Low-dimensional Systems and Nanostructures 109 (2019) 253–260.
[54] L. Kumari, G.H. Du, W.Z. Li, R.S. Vennila, S.K. Saxena, D.Z. Wang, "Synthesis, microstructure and optical characterization of zirconium oxide nanostructures." Ceramica International 35 (2009)2401–2408.
[55] J. Chen, X. Xiao, Y. Wang, Z. Ye, "Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation." Applied Surface Science 467 (2018) 1000–1010.
[56] J. Hu, G. Luo, Z. Li, M. Liu, R. Zou, X. Li, H. Yao, "Deactivation mechanism of KCl and K2SO4 poisoned V2O5/WO3 -TiO2 catalyst on gaseous elemental mercury oxidation." Fuel 278 (2020) 118245.
[57] F. Rinaldi, O. Arutanti, A. Arif, T. Hirano, T. Ogi, K. Okuyama,"Correlations between Reduction Degree and Catalytic Properties of WOx Nanoparticles." ACS Omega 3 (2018) 8963–8970.
[58] R. Gusain, K. Gupta, P. Joshi, O. Khatri, "Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review." Advances in Colloid and Interface Science 272 (2019) 102009.
[59] D. Hang, K. Sharma, C. Chen, S. Islam, "Enhanced Photocatalytic Performance of ZnO Nanorods Coupled by Two-Dimensional α-MoO3 Nanoflakes under UV and Visible Light Irradiation." Chemistry: A European Journal 22 (2016) 12777–12784.
[60] Y. Liu, X. Xi, Z. Nie, L. Zhao, Y. Fan, "Effect of Hydrothermal Conditions on Crystal Structure, Morphology and Visible-Light Driven Photocatalysis of WO3 Nanostructures." Materials Science Forum 993 (2020) 893–898.
[61] T. Govindaraj, C. Mahendran, R. Marnadu, M. Shkir, V.Manikandan, "The remarkably enhanced visible-light-photocatalytic activity of hydrothermally synthesized WO3 nanorods : An effect of Gd doping. " Ceramica International 47 (2021) 4267–4278.