Chitosan – Graphite – Maghemite – a Flexible, Superparamagnetic Nanocomposite Comprising of Microcapacitors

Document Type : Original Article

Authors

1 Department of Physics, Bharath Institute of Higher Education and Research, Chennai - 600 073

2 Department of Physics Anna University, CEG Campus, Chennai - 600 025

Abstract

In this work, an eco-friendly “green” nanocomposite of chitosan containing graphite and maghemite (g-Fe2O3) nanoparticles were prepared by solution casting method. The effect of g-Fe2O3 nanoparticles on structural, electric and dielectric properties of Chitosan-graphite (Cs-graphite) composites was investigated. The dielectric constant of Cs-graphite composites increased with incorporation of g-Fe2O3 nanoparticles. Among the composites Cs-20% graphite - 20% g-Fe2O3 has dielectric constant of ~16.5 at 1 MHz at room temperature. With increase in temperature the dielectric constant varied significantly. The conductivity of Cs-graphite is enhanced by one order of magnitude with addition of g-Fe2O3 nanoparticles, and the value is found to be 5.7x10-6 S/cm. Various parameters such as dielectric constant, dielectric loss, electric modulus, conductivity, activation energy were analyzed. Magnetic measurement of g-Fe2O3 nanoparticles and the PNCs showed superparamagnetic behaviour. A model is proposed to explain the observed dielectric behavior of polymer nanocomposites (PNCs). The formation of microcapacitors by incorporation of maghemite nanoparticles between graphite is proposed.

Keywords

Main Subjects


© 2023 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] G. Landi, A. Sorrentino, F. Fedi, H.C. Neitzert, S. Iannace, "Cycle stability and dielectric properties of a new biodegradable energy storage material." Nano Energy 17 (2015) 348-355.
[2] Z. Yue, I. J. McEwen, J.M.G. Cowie, "Novel gel polymer electrolytes based on a cellulose ester with PEO side chains." Solid State Ionics 156 (2003) 155-162.
[3] S. Ramesh, C.W. Liew, A.K. Arof, "Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate." Journal of Non-Crystalline Solids 357 (2011) 3654-3660.
[4] A.S.A. Khair, R. Puteh, A.K. Arof, "Conductivity studies of a chitosan-based polymer electrolyte." Physica B 373 (2006) 23-27.
[5] K. Pandiselvi, S. Thambidurai, "Chitosan-ZnO/polyaniline ternary nanocomposite for high-performance supercapacitor." Ionics 20 (2013) 551-561.
[6] V.K. Mourya, N.N. Inamdar, "Chitosan-modifications and applications: Opportunities galore." React Funct Polym 68 (2008) 1013-1051.
[7] M. Dash, F. Chiellini, R.M. Ottenbrite, E.Chiellini, "Chitosan-A versatile semi-synthetic polymer in biomedical applications." Progress in Polymer Science 36 (2011) 981-1014.
[8] S.N. Suraiya Begum, V.K. Aswal, R.P. Ramasamy, "Chitosan–Gold–Lithium Nanocomposites as Solid Polymer Electrolyte." Journal of Nanoscience and Nanotechnology 14 (2014) 1-13.
[9] J. B. Gonzalez-Campos, E. Prokhorov, G. Luna-Barcenas, I. C. Sanchez, J. Lara-Romero, M. E. Mendoza-Duarte, F.
Villasenor, L. Guevara-Olvera, "Chitosan/Silver Nanoparticles Composite: Molecular Relaxations Investigation by Dynamic Mechanical Analysis and Impedance Spectroscopy." Journal of Polymer Science Part B: Polymer Physics 48 (2010) 739-748.
[10] S.R. Majid, A.K. Arof, "Electrical behavior of proton-conducting chitosan-phosphoric acid-based electrolytes." Physica B 390 (2007) 209-215.
[11] P. Agrawal, G.J. Strijkers, K. Nicolay, "Chitosan-based systems for molecular imaging." Advanced Drug Delivery Reviews 62 (2009) 42-58.
[12] P. Mukoma, B.R. Jooste, H.C.M.J. Vosloo, "Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells." Journal Power Sources 136 (2004) 16-23.
[13] L. Chai, Q. Qu, L. Zhang, M. Shen, L. Zhang, H. Zheng, "Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries." Electrochimica Acta 105 (2013) 378-383.
[14] Mohammad Hemmati, Majid Jafar Tafreshi, Mohammad Hossein Ehsani, Sanaz Alamdari, "Highly sensitive and wide-range flexible sensor based on hybrid BaWO4@CS nanocomposite." Ceramics International 48 (2022) 26508–26518]
[15] K. Kalaitzidou, H. Fukushima, L.T. Drzal, "Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets." Carbon 45 (2007) 1446-1452.
[16] A. Celzardt, E. McRae, J.F. Mareche, "Composites based on micron-sized exfoliated graphite particles: Electrical conduction critical exponents and anisotropy." Journal Physics Chemistry Solids 57 (1996) 715-718.
[17] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, R.C. Piner, S.T.N guyen, R.S. Ruoff, "Graphene-based composite materials." Nature 442 (2006) 282-286.
[18] H. Kaczmarek, A. Podgorski, "Photochemical and thermal behaviours of poly (vinyl alcohol)/graphite oxide composites." Polymer Degradation and Stability 92 (2007) 939-946.
[19] A.H. Lu, E. L. Salabas, F. Schuth, "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application." Angewandte Chemie International Edition 46 (2007) 1222-1244.
[20] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller, "Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications." Chemical Reviews 108 (2008) 2064-2110.
[21] E. Mitchell, R.K. Gupta, K.M. Darkwa, D. Kumar, K. Ramasamy, B.K. Gupta, P. Kahol, "Facile synthesis and morphogenesis of superparamagnetic iron oxide nanoparticles for high-performance supercapacitor applications." New Journal of Chemistry 38 (2014) 4344-4350.
[22] P. Luo, J. Yu, Z. Shi, F. Wang, L. Liu, H. Huang, Y. Zhao, H. Wang, G. Li, Y. Zou, "Fabrication and supercapacitive properties of Fe2O3@C nanocomposites." Materials Letters 80 (2012) 121-123.
[23] B. Natesan, N.K. Karan, R.S. Katiyar, "Ion relaxation dynamics and nearly constant loss behavior in polymer electrolyte." Physical Review E 48 (2006) 042801-042805.
[24] S.J. Lee, J.R. Jeong, S. C. Shin, J.C. Kim, J.D. Kim, "Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique." Journal of Magnetism and Magnetic Materials 282 (2004) 147–150.
[25] G.H. Podrepsek, Z. Knez, "Different preparation methods and characterization of magnetic maghemite coated with chitosan." Journal of Nanoparticle Research 15 (2013) 1751-1763.
[26] S.F. Wang, L. Shen, W.D. Zhang, "Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites." Biomacromolecules 6 (2005) 3067–3072.
[27] K. Rudzka, A.V. Delgado, J.L. Viota, "Maghemite Functionalization for Antitumor Drug Vehiculization." Molecolar Pharmaceutics 9 (2012) 2017−2028.
[28] N. Valinezhad, A. F. Talebi, S. Alamdari, Biosynthesize, "physicochemical characterization and biological investigations of chitosan-Ferula gummosa essential oil (CS-FEO) nanocomposite." International Journal of Biological Macromolecules 241 (2023) 124503.
[29] J. Chen, J. Xu, K. Wang, X. Qian, R. Sun, "Highly Thermostable, Flexible, and Conductive Films Prepared from Cellulose, Graphite, and Polypyrrole Nanoparticles." ACS Applied Materials & Interfaces 7 (2015) 15641-15648.
[30] C. Peniche, W. Argüelles-Monal, N. Davidenko, R. Sastre, A. Gallardo J. San Román, "Self-Curing Membranes of Chitosan/PAA IPNS Obtained by Radical Polymerization: Preparation, Characterization and Interpolymer Complexation." Biomaterials 20 (1999) 1869−1878.
[31] Y. Ge, Y. Zhang, J. Xia, M. Ma, S. He, F. Nie & N. Gu, "Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro." Colloids and Surfaces B: Biointerfaces, 73(2009) 294–301.
[32] Z. Liu, L. Jiang, F. Galli, I. Nederlof, R. C. L. Olsthoorn, G.E.M. Lamers, T. H. Oosterkamp & J. P. Abrahams, "A graphene oxide streptavidin complex for biorecognition–towards affinity purification." Advanced Functional Materials, 20 (2010) 2857–2865.
[33] Z.L. Chen, F.Y. Kam, R.G.S. Goh, J. Song, G. K. Lim & L.L. Chua, "Influence of Graphite Source on Chemical Oxidative Reactivity’." Chemistry of Materials 25 (2013) 2944−2949.
[34] J. Gu, X. Yang, Z. Lv, N. Li, C. Liang & Q. Zhang, "Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity." International Journal of Heat and Mass Transfer 92 (2016) 15–22.
[35] R.I. Jibrael, M.K.A. Mohammed, "Production of graphene powder by electrochemical exfoliation of graphite electrodes immersed in aqueous solution." Optik 127 6384–6389.
[36] A.R. Futyra, M. Kus-Liskiewicz, V. Sebastian, S. Irusta, M. Arruebo, G. Stochel, A. Kyzioł, "Development of
Noncytotoxic Chitosan−Gold nanocomposites as Efficient Antibacterial Materials." ACS Applied Materials and Interfaces 7 (2015) 1087−1099.
[37] M. Yadav, K.Y. Rhee, S. J. Park & D. Hui, "Mechanical properties of Fe3O4/GO/chitosan composites." Composites Part B 66 (2014) 89–96.
[38] K. J. Lee, J. H. An, J.S. Shin, D. H. Kim, C. Kim, H. Ozaki, J. G. Koh, "Protective effect of maghemite nanoparticles on ultraviolet-induced photo-damage in human skin fibroblasts." Nanotechnology 18 (2007) 465201-465207.
[39] L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li, F. Ye, L. Cheng, L. Zhang, "Electromagnetic Wave Absorption Properties of Reduced Graphene Oxide Modified by Maghemite Colloidal Nanoparticle Clusters." The Journal of Physical Chemistry C 117 (2013) 19701- 19711.
[40] A. C. Ferrari, D. M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene." Nature Nanotechnology 8 (2013) 235-246.
[41] J. Jagiello, J. Judek, M. Zdrojek, M. Aksienionek, L. Lipinska, "Production of graphene composite by direct graphite exfoliation with chitosan." Materials Chemistry and Physics 148 (2014) 507-511.
[42] A. Janes, H. Kurig, E. Lust, "Characterisation of activated nanoporous carbon for supercapacitor electrode materials." Carbon 45 (2007) 1226-1233.
[43] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition." Nano Letters 9 (2008) 30–35.
[44] A.C. Ferrari, J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon." Physical Review B 61 (2000) 14095-14107.
[45] M. Cheng, R. Yang, L.C. Zhang, Z.W. Shi, W. Yang, D.M. Wang, G.B. Xie, D.X. Shi, G.Y. Zhang, "Restoration of graphene from graphene oxide by defect repair." Carbon 50 (2012) 2581-2587.
[46] L.G. Cancado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio, "Influence of the Atomic Structure on the Raman Spectra of Graphite Edges." Physical Review Letters 93 (2004) 247401.
[47] S. Marland, A. Merchant, N. Rowson, "Dielectric properties of coal." Fuel 80 (2001) 1839-1849.
[48] M. Markov, E. Kazatchenko, A. Mousatov, E. Pervago, "The dielectric permittivity of carbonate formations from the unified microstructure model." Journal of Applied Geophysics 76 (2012) 56-63.
[49] A.L.M. Smits, M. Wubbenhorst, P.H. Kruiskamp, J.J.G. Van Soest, J.F.G. Vliegenthart, J. Van Turnhout, "Structure Evolution in Amylopectin/Ethylene Glycol Mixtures by H-bond Formation and Phase Separation Studied with Dielectric Relaxation Spectroscopy." The Journal of Physical Chemistry B 105 (2001) 5630-5636.
[50] J. Wang, K. Zhao, "Dielectric analysis of chitosan–iron composite microspheres suspensions: Access to internal and interface electrokinetic information of microspheres." Colloids and Surfaces A: Physicochemical and Engineering Aspects 396 (2012) 270-277.
[51] N.T. Tunga, T.V. Khai, H. Lee, D. Sohn, "The effects of dopant on morphology formation in polyaniline
graphite nanoplatelet composite." Synthetic Metals 161 (2011) 177-182.
[52] J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, N. Haldolaarachchige, D.P. Young, Z. Guo, "Electrical and dielectric properties of polyaniline–Al2O3 nanocomposites derived from various Al2O3 nanostructures." Journal of Materials Chemistry 21 (2011) 3952–3959.
[53] A.S Bhatt, D. K. Bhat, M.S. Santosh, C.W Tai, "Chitosan/NiO nanocomposites: a potential new dielectric material." Journal of Materials Chemistry 21 (2011) 13490-13497.
[54] X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang, S. Dong, "Impedance study of (PEO)10 LiClO4–Al2O3composite polymer electrolyte with blocking electrodes." Electrochimica Acta 46 (2001) 1829-1836.
[55] M.M. El-Nahass, H.A.M. Ali, "AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile." Solid State Communications152 (2012) 1084-1088.
[56] A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, "Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3 ceramics." Journal of Physics D: Applied Physics 38 (2005) 1450-1460.
[57] M.D. Migahed, M. Ishra, T. Fahmy. A. Barakat, "Electric modulus and AC conductivity studies in conducting PPy composite films at low temperature." Journal of Physics and Chemistry of Solids 65 (2004) 1121-1125.
[58] F. Yakuphanoglu, "Electrical conductivity and electrical modulus properties of α, ω-dihexylsexithiophene organic semiconductor." Physica B 393 (2007) 139-142.
[59] A. Dutta, T.P. Sinha, P. Jena, S. Adak, "Ac conductivity and dielectric relaxation in ionically conducting soda–lime–silicate glasses." Journal of Non-Crystalline Solids 354 (2008) 3952-3957.
[60] L.N. Patro, K. Hariharan, "AC conductivity and scaling studies of polycrystalline SnF2." Materials Chemistry and Physics 116 (2009) 81-87.
[61] H.J. Woo, S.R. Majid, A.K. Arof, "Dielectric properties and morphology of polymer electrolyte based on poly(ɛ-caprolactone) and ammonium thiocyanate." Materials Chemistry and Physics 134 (2012) 755-761.
[62] L.N. Patro, K. Hariharan, "Frequency dependent conduction characteristics of mechanochemically synthesized NaSn2F5." Materials Science and Engineering: B 162 (2009) 173-178.
[63] M. Ram, S. Chakrabarti, "Dielectric and modulus studies on LiFe1/2Co1/2VO4." Journal of Alloys and Compounds 462 (2008) 214-219.
[64] M.Z.A. Yahya, A.K. Arof, "Conductivity and X-ray photoelectron studies on lithium acetate doped chitosan films." Carbohydrate Polymers 55 (2004) 95-100.
[65] G.K. Moats, T.R. Noel, R.Parker, S.G. Ring, "Dynamic mechanical and dielectric characterisation of amylose–glycerol films." Carbohydrate Polymers 44 (2001) 247-253.
[66] I.M. Hodge, M.D. Ingram, A.R. West, "Impedance and modulus spectroscopy of polycrystalline solid
electrolytes." Journal of Electroanalytical Chemistry 74 (1976) 125-143.
[67] R.Gerhardt, "Impedance and dielectric spectroscopy revisited: Distinguishing localized relaxation from long-range conductivity." Journal of Physics and Chemistry of Solids 55 (1994) 1491–1506.
[68] P. Jevanandam, S. Vasudevan, "Arrhenius and non-Arrhenius conductivities in intercalated polymer electrolytes." The Journal of Chemical Physics 109 (1998) 8109.
[69] A. Rouahi, A. Kahouli, A. Sylvestre, B. Yangui, "Impedance spectroscopic and dielectric analysis of Ba0.7Sr0.3TiO3 thin films." Journal of Alloys and Compounds 529 (2012) 84-88.
[70] M.A. Ahmed, M.A. El Hiti, M.K. El Nimr, M.A. Amer, "The ac electrical conductivity for Co-substituted SbNi ferrites." Journal of Magnetism and Magnetic Materials 152 (1996) 391-395.
[71] A. Millan, A. Urtizberea, N.J.O. Silva, F. Palacio, V.S. Amaral, E. Snoeck, V. Serin, "Surface effects in maghemite nanoparticles." Journal of Magnetism and Magnetic Materials 312 (2007) L5–L9.
[72] M. Rozman, M. Drofenik, "Hydrothermal Synthesis of Manganese Zinc Ferrites." Journal of the American Ceramic Society 78 (1995) 2449-2455.
Volume 3, Issue 1 - Serial Number 4
(In honor of 80th birthday of Prof. P. Ramasamy)
November 2023
Pages 83-103
  • Receive Date: 30 August 2023
  • Revise Date: 11 October 2023
  • Accept Date: 16 October 2023