[1] E. Braun, A.F. Zurhelle, W. Thijssen, S.K. Schnell, L.-C. Lin, J. Kim, J.A. Thompson, and B. Smit, "High-throughput computational screening of nanoporous adsorbents for CO 2 capture from natural gas." Molecular Systems Design & Engineering 1 (2016) 175–188.
[2] H.J. Kwon, Y. Kwon, T. Kim, Y. Jung, S. Lee, M. Cho, and S. Kwon, "Enhanced competitive adsorption of CO2 and H2 on graphyne: A density functional theory study." AIP Advances 7 (2017) 125013.
[3] Y. Li, L. Xu, H. Liu, and Y. Li, "Graphdiyne and graphyne: from theoretical predictions to practical construction." Chemical Society Reviews journal 43 (2014) 2572–2586.
[4] D.W. Ma, T. Li, Q. Wang, G. Yang, C. He, B. Ma, and Z. Lu, "Graphyne as a promising substrate for the noble-metal single-atom catalysts." Carbon N. Y. 95 (2015) 756–765.
[5] B. Kang, and J.Y. Lee, "Electronic properties of α-graphyne nanotubes." Carbon N. Y. 84 (2015) 246–253.
[6] J. Gong, Y. Tang, H. Yang, and P. Yang, "Theoretical investigations of sp–sp2 hybridized capped graphyne nanotubes." Chemical Engineering Science 134 (2015) 217–221.
[7] M.M. Nurfarhana, N. Asikin-Mijan, and S.F.M. Yusoff, "Porous carbon from natural rubber for CO2 adsorption." Materials Chemistry and Physics 308 (2023) 128196.
[8] G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, "Architecture of graphdiyne nanoscale films." Chemical Communications 46 (2010) 3256–3258.
[9] S. Horiuchi, T. Gotou, M. Fujiwara, R. Sotoaka, M. Hirata, K. Kimoto, T. Asaka, T. Yokosawa, Y. Matsui, and K. Watanabe, "Carbon nanofilm with a new structure and property." Japanese Journal of Applied Physics 42 (2003) 1073.
[10] Y.B. Apriliyanto, N. Faginas Lago, A. Lombardi, S. Evangelisti, M. Bartolomei, T. Leininger, and F. Pirani, "Nanostructure selectivity for molecular adsorption and separation: the case of graphyne layers." The Journal of Physical Chemistry C - ACS Publications 122 (2018) 16195–16208.
[11] Y. Jiao, A. Du, Z. Zhu, V. Rudolph, and S.C. Smith, "A density functional theory study of CO 2 and N 2 adsorption on aluminium nitride single walled nanotubes." Journal of Materials Chemistry 20 (2010)
10426–10430.
[12] W. Koch, and M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (John Wiley & Sons, 2015).
[13] D.S. Biovia, "Discovery studio visualizer." San Diego, CA, USA 936 (2017).
[14] L.A. Burns, Á.V.- Mayagoitia, B.G. Sumpter, and C.D. Sherrill, "Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals." The Journal of Chemical Physics 134 (2011) 84107.
[15] R.H. Baughman, H. Eckhardt, and M. Kertesz, "Structure‐property predictions for new planar forms of carbon: Layered phases containing sp 2 and sp atoms." The Journal of Chemical Physics 87 (1987) 6687–6699.
[16] J.P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple." Physical Review Letters 77 (1996) 3865.
[17] H.N. Waltenburg, and P.J. Møller, "Growth of ultrathin Cu films on CaO (100)." Surface Science 439 (1999) 139–145.
[18] D. Bende, F.R. Wagner, O. Sichevych, and Y. Grin, "Chemical bonding analysis as a guide for the preparation of new compounds: The case of VIrGe and HfPtGe." Angewandte Chemie 129 (2017) 1333–1338.
[19] J.P. Perdew "J.P. Perdew, K. Burke, and M. Ernzerhof." Physical Review Letters 77 (1996) 3765.
[20] B. Li, K. Luo, Y. Ge, Y. Zhang, K. Tong, B. Liu, G. Yang, Z. Zhao, B. Xu, and Y. Tian, "Superior toughness and hardness in graphite–diamond hybrid induced by coherent interfaces." Carbon N. Y. 203 (2023) 357–362.
[21] A.H. Mostafatabar, G. Bahlakeh, M. Ramezanzadeh, and B. Ramezanzadeh, "Eco-friendly protocol for zinc-doped amorphous carbon-based film construction over steel surface using nature-inspired phytochemicals: Coupled experimental and classical atomic/molecular and electronic-level theoretical explorations." Journal of environmental-chemical-engineering 9 (2021) 105487.
[22] G. Vasseur, Y. Fagot-Revurat, M. Sicot, B. Kierren, L. Moreau, D. Malterre, L. Cardenas, G. Galeotti, J. Lipton-Duffin, and F. Rosei, "Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires." Nature Communications 7 (2016) 10235.
[23] S. Ehrlich, J. Moellmann, W. Reckien, T. Bredow, and S. Grimme, "System‐dependent dispersion coefficients for the DFT‐D3 treatment of adsorption processes on ionic surfaces." ChemPhysChem 12 (2011) 3414–3420.
[24] B. Delley, "From molecules to solids with the DMol 3 approach." The Journal of Chemical Physics 113 (2000) 7756–7764.
[25] W. Koh, J.I. Choi, E. Jeong, S.G. Lee, and S.S. Jang, "Li adsorption on a Fullerene–Single wall carbon nanotube hybrid system: Density functional theory approach." Current Applied Physics 14 (2014)1748–1754.
[26] L.D. Machado, P.A.S. Autreto, and D.S. Galvao, "Graphyne oxidation: insights from a reactive molecular dynamics investigation." MRS Online Proceedings Library 1549 (2013) 53–58.
[27] B. Kang, H. Liu, and J.Y. Lee, "Oxygen adsorption on single layer graphyne: a DFT study." Physical Chemistry Chemical Physics 16 (2014) 974–980