[1] M. S. Martina, J. P. Fortin, C. Ménager, O. Clément, G. Barratt, C. Grabielle-Madelmont, S. Lesieur, "Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging." Journal of the American Chemical Society 127 (2005) 10676-10685.
[2] M. Mahdavi, M. B. Ahmad, M. J. Haron, F.Namvar, B. Nadi, M. Z. A. Rahman, J. Amin, "Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications." Molecules 18 (2013) 7533-7548.
[3] S. Esmaeili, M. Aghazadeh, I. Karimzadeh, F. Shokrian, "The effect of different substitutions (Eu, Ce, Al, and Bi) on the structural and magnetic properties of Fe3O4." Progress in Physics of Applied Materials 2 (2022) 41-47.
[4] H. Ghorbani, M. Eshraghi, A. A. Sabouri, "Magnetic properties of Co0. 9Cd0. 1Fe1. 9X0. 1O4 (X= Cr, Yb) nanoparticles prepared by hydrothermal method." Progress in Physics of Applied Materials 1 (2021) 50-56.
[5] M. Mirrahimi, V. Hosseini, A. Shakeri-Zadeh, Z. Alamzadeh, S. K. Kamrava, N. Attaran, S. M. A. Hosseini Nami, "Modulation of cancer cells’ radiation response in the presence of folate conjugated Au@Fe2O3 nanocomplex as a targeted radiosensitizer." Clinical and Translational Oncology 21 (2019) 479-488.
[6] C. Tassa, S. Y. Shaw, R. Weissleder, "Dextran-Coated Iron Oxide Nanoparticles: A Versatile Platform for Targeted Molecular Imaging, Molecular Diagnostics, and Therapy." Accounts of Chemical Research 44 (2011) 842–852.
[7] N. Dudchenko, S. Pawar, I. Perelshtein, D. Fixler, "Magnetite Nanoparticles: Synthesis and Applications in Optics and Nanophotonics." Materials 15 (2022) 260.
[8] L. S. Ganapathe, M. A. Mohamed, R. Mohamad Yunus, D. D. Berhanuddin, "Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation." Magnetochemistry 6 (2020) 68-74.
[9] M. A. Dheyab, A. A. Aziz, M. S. Jameel, O. A. Noqta, B. Mehrdel, "Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications." Chinese Journal of Physics 64 (2020) 305–325.
[10] M. Ognjanović, D. M. Stanković, Ž. K. Jaćimović, M. Kosović-Perutović, B. Dojčinović, B. Antić, "The effect of surface-modifier of magnetite nanoparticles on electrochemical detection of dopamine and heating efficiency in magnetic hyperthermia." Journal of Alloys and Compounds 884 (2021) 161075-84.
[11] E.-S. Tekiye, Z. Aghajani, M. A. Sharif, "Synthesis and characterization of Fe3O4@Al2O3 nanoparticles and investigation its catalyst application." Journal of Materials Science: Materials in Electronics 28 (2017) 5360–5365.
[12] T. J. Yu, P. H. Li, T. W. Tseng, Y. C. Chen, "Multifunctional Fe3O4 /alumina core/shell MNPs as photothermal agents for targeted hyperthermia of nosocomial and antibiotic-resistant bacteria." Nanomedicine 6 (2011) 1353–1363.
[13] A. Rajan, B. Kaczmarek-Szczepańskac, N. K. Sahu, "Magneto-thermal response of Fe3O4@CTAB nanoparticles for cancer hyperthermia applications." Materials Today Communications 28 (2021) 102583-95.
[14] A. Dahaghin, S. Emadiyanrazavi, M. Haghpanahi, M. Salimibani, H. Bahreinizad, R. Eivazzadeh-Keihan, A. Maleki, "A comparative study on the effects of increase in injection sites on the magnetic nanoparticles hyperthermia." Journal of Drug Delivery Science and Technology 63 (2021) 102542.
[15] B. Hildebrandt, "The cellular and molecular basis of hyperthermia." Critical Reviews in Oncology/Hematology 43 (2002) 33–56.
[16] A. Hervault, N. T. K. Thanh, "Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer." Nanoscale 6 (2014) 11553–11573.
[17] F. Gao, Y. Ye, Y. Zhang, J. Yang, "Water bath hyperthermia reduces stemness of colon cancer cells." Clinical Biochemistry 46 (2013) 1747–1750.
[18] T. Mantso, S. Vasileiadis, I. Anestopoulos, G.P. Voulgaridou, E. Lampri, S. Botaitis, E.N. Kontomanolis, C. Simopoulos, G. Goussetis, R. Franco, K. Chlichlia, "Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma." Scientific reports 8 (2018)10724-33.
[19] X. Yu, R. Yang, C. Wu, B. Liu, W. Zhang, "The heating efficiency of magnetic nanoparticles under an alternating magnetic field." Scientific Reports 12 (2022) 16055-62.
[20] Q. J. Sun, M. H. Dong, H. C. Cai, X. Y. Zhang, X. G. Lu, "Preparation and thermogenic performance of monodisperse ferromagnetic Fe/SiO2 nanoparticles for magnetic hyperthermia and thermal ablation." Journal of Magnetism and Magnetic Materials 565 (2023) 170275.
[21] L. Nyaba, J. M. Matong, P. N. Nomngongo, "Nanoparticles consisting of magnetite and Al2O3 for ligandless ultrasound-assisted dispersive solid phase microextraction of Sb, Mo and V prior to their determination by ICP-OES." Microchimica Acta 183 (2016) 1289–1297.
[22] M. M. A. El-Latif, A. M. Ibrahim, M. S. Showman, R. R. A. Hamide, "Alumina/Iron Oxide Nano Composite for Cadmium Ions Removal from Aqueous Solutions." International Journal of Nonferrous Metallurgy 2 (2013) 47–62.
[23] M. F. Sanad, B. P. Meneses-Brassea, D. S. Blazer, S. Pourmiri, G. C. Hadjipanayis, A. A. El-Gendy, "Superparamagnetic Fe/Au Nanoparticles and Their Feasibility for Magnetic Hyperthermia." Applied Sciences 11 (2021) 6637-44.