Synthesis of coated iron oxide nanoparticles and feasibility study of their use in magnetic hyperthermia

Document Type : Original Article

Authors

1 Department of Solid State Physics, University of Mazandaran, Babolsar, Iran.

2 Nanoelectronic Research Laboratory, Faculty of Sciences, Department of Physics, University of Mazandaran, Babolsar, Iran.

3 Molecular Electronic Laboratory, University of Mazandaran, Babolsar, Iran.

Abstract

The unique properties of magnetic nanoparticles have made them useful and important particles for use in various fields, especially in heat-based applications. This research presents a hopeful facet of magnetic hyperthermia by superparamagnetic Fe3O4/Alumina nanoparticles. We synthesized Fe3O4/Alumina nanoparticles of different sizes by sonochemical method and evaluated their ability to generate heat. We found by characterizations with Field emission scanning electron microscopy (FE-SEM), X-ray diffraction technique (XRD), and Transmission electron microscopy (TEM) the samples to be of spherical shapes and spinel structure whose diameter could be controlled in the range from 15 to 25 nm. The magnetic behavior of the samples determined using a vibration sample magnetometer (VSM) showed hysteresis loops with a coercivity (HC) close to zero, suggesting superparamagnetic behavior at room temperature. The saturation magnetization (MS) for sample 3 after synthesis is 23 emu/g. We also investigated the potential of the samples for magnetic hyperthermia using alternating magnetic fields at various frequencies. Samples 1, 2, and 3 achieved heat production rates of 0.22 °C/min, 0.41 °C/min, and 0.62 °C/min respectively under an alternating magnetic field with an amplitude of 120 Oe and a frequency of 250 kHz. 

Keywords

Main Subjects


© 2023 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] M. S. Martina, J. P. Fortin, C. Ménager, O. Clément, G. Barratt, C. Grabielle-Madelmont, S. Lesieur, "Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging." Journal of the American Chemical Society 127 (2005) 10676-10685.
[2] M. Mahdavi, M. B. Ahmad, M. J. Haron, F.Namvar, B. Nadi, M. Z. A. Rahman, J. Amin, "Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications." Molecules 18 (2013) 7533-7548.
[3] S. Esmaeili, M. Aghazadeh, I. Karimzadeh, F. Shokrian, "The effect of different substitutions (Eu, Ce, Al, and Bi) on the structural and magnetic properties of Fe3O4." Progress in Physics of Applied Materials 2 (2022) 41-47.
[4] H. Ghorbani, M. Eshraghi, A. A. Sabouri, "Magnetic properties of Co0. 9Cd0. 1Fe1. 9X0. 1O4 (X= Cr, Yb) nanoparticles prepared by hydrothermal method." Progress in Physics of Applied Materials 1 (2021) 50-56.
[5] M. Mirrahimi, V. Hosseini, A. Shakeri-Zadeh, Z. Alamzadeh, S. K. Kamrava, N. Attaran, S. M. A. Hosseini Nami, "Modulation of cancer cells’ radiation response in the presence of folate conjugated Au@Fe2O3 nanocomplex as a targeted radiosensitizer." Clinical and Translational Oncology 21 (2019) 479-488.
[6] C. Tassa, S. Y. Shaw, R. Weissleder, "Dextran-Coated Iron Oxide Nanoparticles: A Versatile Platform for Targeted Molecular Imaging, Molecular Diagnostics, and Therapy." Accounts of Chemical Research 44 (2011) 842–852.
[7] N. Dudchenko, S. Pawar, I. Perelshtein, D. Fixler, "Magnetite Nanoparticles: Synthesis and Applications in Optics and Nanophotonics." Materials 15 (2022) 260.
[8] L. S. Ganapathe, M. A. Mohamed, R. Mohamad Yunus, D. D. Berhanuddin, "Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation." Magnetochemistry 6 (2020) 68-74.
[9] M. A. Dheyab, A. A. Aziz, M. S. Jameel, O. A. Noqta, B. Mehrdel, "Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications." Chinese Journal of Physics 64 (2020) 305–325.
[10] M. Ognjanović, D. M. Stanković, Ž. K. Jaćimović, M. Kosović-Perutović, B. Dojčinović, B. Antić, "The effect of surface-modifier of magnetite nanoparticles on electrochemical detection of dopamine and heating efficiency in magnetic hyperthermia." Journal of Alloys and Compounds 884 (2021) 161075-84.
[11] E.-S. Tekiye, Z. Aghajani, M. A. Sharif, "Synthesis and characterization of Fe3O4@Al2O3 nanoparticles and investigation its catalyst application." Journal of Materials Science: Materials in Electronics 28 (2017) 5360–5365.
[12] T. J. Yu, P. H. Li, T. W. Tseng, Y. C. Chen, "Multifunctional Fe3O4 /alumina core/shell MNPs as photothermal agents for targeted hyperthermia of nosocomial and antibiotic-resistant bacteria." Nanomedicine 6 (2011) 1353–1363.
[13] A. Rajan, B. Kaczmarek-Szczepańskac, N. K. Sahu, "Magneto-thermal response of Fe3O4@CTAB nanoparticles for cancer hyperthermia applications." Materials Today Communications 28 (2021) 102583-95.
[14] A. Dahaghin, S. Emadiyanrazavi, M. Haghpanahi, M. Salimibani, H. Bahreinizad, R. Eivazzadeh-Keihan, A. Maleki, "A comparative study on the effects of increase in injection sites on the magnetic nanoparticles hyperthermia." Journal of Drug Delivery Science and Technology 63 (2021) 102542.
[15] B. Hildebrandt, "The cellular and molecular basis of hyperthermia." Critical Reviews in Oncology/Hematology 43 (2002) 33–56.
[16] A. Hervault, N. T. K. Thanh, "Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer." Nanoscale 6 (2014) 11553–11573.
[17] F. Gao, Y. Ye, Y. Zhang, J. Yang, "Water bath hyperthermia reduces stemness of colon cancer cells." Clinical Biochemistry 46 (2013) 1747–1750.
[18] T. Mantso, S. Vasileiadis, I. Anestopoulos, G.P. Voulgaridou, E. Lampri, S. Botaitis, E.N. Kontomanolis, C. Simopoulos, G. Goussetis, R. Franco, K. Chlichlia, "Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma." Scientific reports 8 (2018)10724-33.
[19] X. Yu, R. Yang, C. Wu, B. Liu, W. Zhang, "The heating efficiency of magnetic nanoparticles under an alternating magnetic field." Scientific Reports 12 (2022) 16055-62.
[20] Q. J. Sun, M. H. Dong, H. C. Cai, X. Y. Zhang, X. G. Lu, "Preparation and thermogenic performance of monodisperse ferromagnetic Fe/SiO2 nanoparticles for magnetic hyperthermia and thermal ablation." Journal of Magnetism and Magnetic Materials 565 (2023) 170275.
[21] L. Nyaba, J. M. Matong, P. N. Nomngongo, "Nanoparticles consisting of magnetite and Al2O3 for ligandless ultrasound-assisted dispersive solid phase microextraction of Sb, Mo and V prior to their determination by ICP-OES." Microchimica Acta 183 (2016) 1289–1297.
[22] M. M. A. El-Latif, A. M. Ibrahim, M. S. Showman, R. R. A. Hamide, "Alumina/Iron Oxide Nano Composite for Cadmium Ions Removal from Aqueous Solutions." International Journal of Nonferrous Metallurgy 2 (2013) 47–62.
[23] M. F. Sanad, B. P. Meneses-Brassea, D. S. Blazer, S. Pourmiri, G. C. Hadjipanayis, A. A. El-Gendy, "Superparamagnetic Fe/Au Nanoparticles and Their Feasibility for Magnetic Hyperthermia." Applied Sciences 11 (2021) 6637-44.
Volume 3, Issue 1 - Serial Number 4
(In honor of 80th birthday of Prof. P. Ramasamy)
November 2023
Pages 67-72
  • Receive Date: 20 August 2023
  • Revise Date: 04 September 2023
  • Accept Date: 04 September 2023