Study of structure, morphology, optical absorption, and gap modulation of Activated carbon (AC) / NiO, Fe3O4, and Co3O4 oxide nanocomposites

Document Type : Original Article

Authors

School of Physics, Damghan University, Damghan, Iran.

Abstract

In this paper, the synthesis and structural and optical properties of activated carbon /metal oxide nanocomposites have been studied for energy storage applications. Activated carbon / nickel oxide, activated carbon / iron oxide, and activated carbon / cobalt oxide nanocomposites were synthesized by green synthesis from carbonaceous waste and their structural and optical properties were investigated. The prepared nanocomposites were characterized by X-ray diffraction (XRD), UV-Vis optical absorption spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy techniques. The XRD results of the activated carbon / metal oxide nanocomposites, in addition to the activated carbon background, show a polycrystalline phase corresponding to NiO, Fe3O4, and Co3O4 oxides. According to SEM images, a carbon porous background was observed in nanocomposites, which is filled with metal oxide nanoparticles and these nanoparticles present on its surface non-uniformly. The band gap results of nanocomposites showed the presence of two shoulders clearly indicating the presence of two components in the nanocomposite, i.e., activated carbon (3.62-4.65 eV) and metal oxide (3.0 eV- 4.25 eV). In FTIR analysis, in addition of the carbon-carbon bonds, specific peaks were observed in the range of k=400-700 cm-1, indicating that AC/ metal oxide nanocomposites have been successfully synthesized. 

Keywords

Main Subjects


© 2023 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] H. Hadoun, Z. Sadaoui, N. Souami, D. Sahel, and I. Toumert. "Characterization of mesoporous carbon prepared from date stems by H3PO4 chemical activation." Applied Surface Science 280 (2013) 1-7.
[2] J. Yongbin, T. Li, L. Zhu, X. Wang, and Q. Lin. "Preparation of activated carbons by microwave heating KOH activation." Applied surface science 254 (2007) 506-512.
[3] Y. Sait, and D. Yıldız. "Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4." Journal of the Taiwan Institute of Chemical Engineers 53 (2015) 122-131.
[4] B. Corcho-Corral, M. Olivares-Marín, C. Fernández-González, V. Gómez-Serrano, and A. Macías-García. "Preparation and textural characterization of activated carbon from vine shoots (Vitis vinifera) by H3PO4—chemical activation." Applied Surface Science 252 (2006) 5961-5966.
[5] B. Saswata, T. Kuila, A. Kumar Mishra, R. Rajasekar, N. Hoon Kim, and J. Hee Lee. "Carbon-based nanostructured materials and their composites as supercapacitor electrodes." Journal of Materials Chemistry 22 (2012) 767-784.
[6] M. Ho, Y. P. S. Khiew, D. Isa, T. K. Tan, W. S. Chiu, and C. H. Chia. "A review of metal oxide composite electrode materials for electrochemical capacitors." Nano 9 (2014) 1430002.
[7] L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, and L.J. Wan. "Self‐Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment." Advanced materials 18 (2006) 2426-2431.
[8] G. Jingming, and X. Lin. "Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid." Microchemical journal 75 (2003) 51-57.
[9] C. Z. Min, L.Y. Jiang, W. G. Song, and Y.G. Guo. "High-yield gas− liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries." Chemistry of Materials 21 (2009) 1162-1166.
[10] K. Dong-Jun, Y. K. Lyu, H. N. Choi, I. H. Min, and W.Y. Lee. "Nafion-stabilized magnetic nanoparticles (Fe 3 O 4) for [Ru (bpy) 3] 2+ (bpy= bipyridine) electrogenerated chemiluminescence sensor." Chemical Communications 23 (2005) 2966-2968.
[11] T. J. Daou, J. M. Grenèche, G. Pourroy, S. Buathong, A. Derory, C. Ulhaq-Bouillet, B. Donnio, D. Guillon, and S. Begin-Colin. "Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles." Chemistry of Materials 20 (2008) 5869-5875.
[12] S. Manfred, S. Olejnik, E. L. Salabas, W.Schmidt, and F. Schüth. "Scalable synthesis of activated carbon with superparamagnetic properties." Chemical communications 38 (2006) 3987-3989.
[13] S. Samik, P. Maji, D. A. Pethsangave, A. Roy, A. Ray, S. Some, and S. Das. "Effect of morphological ordering on the electrochemical performance of MnO2-Graphene oxide composite." Electrochimica Acta 317 (2019) 199-210.
[14] T. Xiaoqi, S. Liu, Q. Guo, J. Zhang, S. Liang, M. He, and J. Luo. "Synthesis and characterization of amorphous MnO2/CNT via solid‐state microwave for high‐performance supercapacitors." International Journal of Energy Research 44 (2020) 4556-4567.
[15] X. Guo-Ting, C. Li, K. Wang, and L. W. Li. "Structural design and electrochemical performance of PANI/CNTs and MnO2/CNTs supercapacitor." Science of Advanced Materials 11 (2019) 1079-1086.
[16] W. Hongjuan, C. Peng, F. Peng, H. Yu, and J. Yang. "Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors." Materials Science and Engineering: B 176 (2011) 1073-1078.
[17] Li. Gao-Ren, Z. P. Feng, Y. N. Ou, D. Wu, R. Fu, and Y. X. Tong. "Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors." Langmuir 26 (2010) 2209-2213.
[18] J. G. Wang, Y. Yang, Z. H. Huang, and F. Kang. "Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors." Electrochimica Acta 56 (2011) 9240-9247.
[19] P. Yiting, Z. Chen, J. Wen, Q. Xiao, D. Weng, S. He, H. Geng, and Y. Lu. "Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes." Nano Research 4 (2011) 216-225.
[20] S. Burhanuddin, A. Yarmo, and B. M. Yamin. "Synthesis and characterisation of manganese oxides from potassium permanganate and citric acid mixtures." In AIP Conference Proceedings American Institute of Physics 157 (2013) 1932-937.
[21] J. Christian M., and A. Mauger. "Nanostructured MnO2 as electrode materials for energy storage." Nanomaterials 7 (2017) 396.
[22] A. Hashem, H. Abuzeid, M. Kaus, S. Indris, H. Ehrenberg, A. Mauger, C. M. Julien, "Green synthesis of nanosized manganese dioxide as positive electrode for lithium-ion
batteries using lemon juice and citrus peel." Electrochimica Acta 262 (2018) 74-81.
[23] P. Yola Prihardini Sasqia, and A. Awaluddin. "Manganese Oxide Synthesis of Birnessite Type Using Sol-Gel Method for Methylene Blue Degradation." In International Conference of CELSciTech 2019-Science and Technology track (ICCELST-ST 2019) 75-79.
[24] S. M. Benoy, M. Pandey, D. Bhattacharjya, and B. K. Saikia. "Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials." Journal of Energy Storage 52 (2022) 104938.
[25] S. Surjit, P. Pazhamalai, V. K. Mariappan, G. K. Veerasubramani, N. Kim, and Sang-Jae Kim. "Hydrothermally synthesized chalcopyrite platelets as an electrode material for symmetric supercapacitors." Inorganic Chemistry Frontiers 7 (2020) 1492-1502.
[26] S. Yuanlong, M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, and R. B. Kaner. "Design and mechanisms of asymmetric supercapacitors." Chemical reviews 118 (2018) 9233-9280.
[27] Z. Man, A. Bahi, Y. Zhao, L. Lin, F. Ko, P. Servati, S. Soltanian et al. "Enhancement of charge transport in interconnected lignin-derived carbon fibrous network for flexible battery-supercapacitor hybrid device." Chemical Engineering Journal 409 (2021) 128214.
[28] G. Dong-Cai, S. Tian, Y. Hui Sun, F. Deng, J. Min Nan, G. Zheng Ma, and Y. P. Cai. "Investigation of the electrochemical properties and kinetics of a novel SnFe2O4@ nitrogen-doped carbon composite anode for lithium-ion batteries." Electrochimica Acta 322 (2019) 134722.
[29] S. Shin, J. Jang, S. H. Yoon, and I. Mochida. "A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR." Carbon 35 (1997) 1739-1743.
[30] H. Saadia, N. Iqbal, T. Noor, N. Zaman, and K. Vignarooban. "Electrocatalytic study of NiO-MOF with activated carbon composites for methanol oxidation reaction." Scientific Reports 11 (2021) 17192.
[31] F. Rauf, S. J. Peighambardoust, S. H. Peighambardoust, M. Pateiro, and J. M. Lorenzo. "Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/Fe3O4 magnetic nanocomposite from aqueous solutions: a kinetic, equilibrium and thermodynamic study." Molecules 26 (2021) 2241.
[32] Y. Zhang, H. Wei, H. Kimura, D. Wu, X. Xie, X. Yang, C. Hou, X. Sun, and W. Du. "Facile synthesis, microstructure and electrochemical performance of peanut shell derived porous activated carbon /Co3O4 composite for hybrid supercapacitors." Ceramics International 48 (2022) 34576-34583.
Volume 3, Issue 1 - Serial Number 4
(In honor of 80th birthday of Prof. P. Ramasamy)
November 2023
Pages 15-28
  • Receive Date: 26 April 2023
  • Revise Date: 20 June 2023
  • Accept Date: 24 June 2023