[1] Q. Zhang, Y. Du, X. Chang, B. Xu, G. Chen, S. He, D. Zhang, Q . Li,
J. Wang, R. Wang, H.X. Wang, "Partly-O-Diamond Solution- Gate Field-Effect Transistor as an Efficient Biosensor of Glucose." Journal of The Electrochemical Society (2022).
[2] Y. Zheng, C. Li, J. Liu, J. Wei, H. Ye, "Diamond with nitrogen: states, control, and applications." Functional Diamond 1 (2021) 63-82.
[3] G.A. Mansoori, "Advances in atomic & molecular nanotechnology." United Nations Tech Monitor (2002) 53- 59.
[4] D. Appell, "Nanotechnology: Wired for success." Nature 419 (2002) 553-556.
[5] K.E. Drexler, "Nanosystems: molecular machinery, manufacturing, and computation." John Wiley & Sons, Inc., 1992.
[6] T. Mikolajick, A. Heinzig, J. Trommer, S. Pregl, M. Grube, G. Cuniberti, W.M. Weber, "Silicon nanowires–a versatile technology platform." physica status solidi (RRL)–Rapid Research Letters 7 (2013) 793-799.
[7] C.H. Hsu, S.G. Cloutier, S. Palefsky, J. Xu, "Synthesis of diamond nanowires using atmospheric-pressure chemical vapor deposition." Nano letters 9 (2010) 3272-3276.
[8] F. Marsusi, S.M. Monavari, "Engineering energy gap of the carbon saturated nanowire and investigation of ammonia molecule doping effects by using initial calculations (Ab initio)." Iranian Journal of Physics Research 18 (2019) 313-
320.
[9] O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, "Carbon nanostructures." Critical reviews in solid state and material sciences 27 (2002) 227-356.
[10] Y. Yu, L. Wu, J. Zhi, "Diamond nanowires: fabrication, structure, properties, and applications." Angewandte Chemie International Edition 53 (2014) 14326-14351.
[11] F. Marsusi, S.M. Monavari, "Phononic and electronic features of diamond nanowires." Diamond and Related Materials 109 (2020) 108051.
[12] A.S. Barnard, S.P. Russo, I.K. Snook, "Electronic band gaps of diamond nanowires." Physical Review B 68 (2003) 235407.
[13] J.R. Solano, A.T. Baños, Á.M. Durán, E.C. Quiroz, M.C. Irisson, "DFT study of anisotropy effects on the electronic properties of diamond nanowires with nitrogen-vacancy center." Journal of Molecular Modeling 23 (2017) 1-8.
[14] JC. Arnault, S. Saada, V. Ralchenko, "Chemical vapor deposition single‐crystal diamond." a review. physica status solidi (RRL)–Rapid Research Letters 16 (2022) 2100354.
[15] Y. Yu, L. Wu, J. Zhi, "Diamond nanowires: fabrication, structure, properties and applications." In Novel aspects of diamond. Springer, Cham (2014) 123-164.
[16] M. Shellaiah, K.W. Sun, "Diamond-based electrodes for detection of metal ions and anions." Nanomaterials 12 (2021) 64.
[17] X. Peng, Y. Li, S. Duan, J. Chu, P. Feng, "Precise ultrananocrystalline diamond nanowire arrays for high performance gas sensing application." Materials Letters 265 (2020) 127404.
[18] H.J. Monkhorst, J.D. Pack, "Special points for Brillouin-zone integrations." Physical review B 13 (1976) 5188.
[19] N. Troullier, J.L. Martins, "Efficient pseudopotentials for plane-wave calculations." Physical review B 43 (1991) 1993.
[20] S. Grimme, "Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction." Journal of computational chemistry 27 (2006) 1787-1799.
[21] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, "A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H- Pu." The Journal of chemical physics 132 (2010) 154104.
[22] A.S. Barnard, S.P. Russo, I.K. Snook, "Surface structure of cubicdiamondnanowires." Surfacescience 538(2003) 204-
210.
[23] D. Zhao, W. Gao, Y. Li, Y. Zhang, H, Yin, "The electronic properties and band-gap discontinuities at the cubic boron nitride/diamond hetero-interface." RSC advances 9 (2019)
8435-43.
[24] A.S. Barnard, S.P. Russo, I.K. Snook, "Ab initio modelling of boron and nitrogen in diamond nanowires." Philosophical Magazine 83 (2003) 2301-2309.