[1] A. Kumar, P. Raizada, A. Hosseini-Bandegharaei, V.K. Thakur, V.-H. Nguyen, P. Singh, "C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges." Journal of Materials Chemistry A 9 (2021) 111-153.
[2] H. Jung, T.-T. Pham, E.W. Shin, "Interactions between ZnO nanoparticles and amorphous g-C3N4 nanosheets in thermal formation of g-C3N4/ZnO composite materials: The annealing temperature effect." Applied Surface Science 458 (2018) 369-381.
[3] B. Rhimi, C. Wang, D.W. Bahnemann, "Latest progress in g-C3N4 based heterojunctions for hydrogen production via photocatalytic water splitting: a mini review." Journal of Physics: Energy 2 (2020) 042003.
[4] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, "A metal-free polymeric photocatalyst for hydrogen production from water under visible light." Nature materials 8 (2009) 76-80.
[5] J. Wang, S. Wang, "A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application." Coordination Chemistry Reviews 453 (2022) 214338.
[6] L. Bai, H. Huang, S. Yu, D. Zhang, H. Huang, Y. Zhang, "Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors." Journal of Energy Chemistry 64 (2022) 214-235.
[7] G. Nabi, N. Malik, W. Raza, "Degradation effect of temperature variation and dye loading g-C3N4 towards organic dyes." Inorganic Chemistry Communications 119 (2020) 108050.
[8] J. Wena, J. Xie, X. Chen, X. Li, "A review on g-C3N4-based photocatalysts." Applied Surface Science 391 (2017) 72-123.
[9] W.r. Lee, Y.S. Jun, J. Park, G.D. Stucky, "Crystalline poly (triazine imide) based g-CN as an efficient electrocatalyst for counter electrodes of dye-sensitized solar cells using a triiodide/iodide redox electrolyte." Journal of Materials Chemistry A 3 (2015) 24232-24236.
[10] Y. Ishida, L. Chabanne, M. Antonietti, M. Shalom, "Morphology control and photocatalysis enhancement by the one-pot synthesis of carbon nitride from preorganized hydrogen-bonded supramolecular precursors." Langmuir 30 (2014) 447-451.
[11] L. Lin, P. Ye, C. Cao, Q. Jin, G.-S. Xu, Y.-H. Shen, Y.-P. Yuan, "Rapid microwave-assisted green production of a crystalline polyimide for enhanced visible-light-induced photocatalytic hydrogen production." Journal of Materials Chemistry A 3 (2015) 10205-10208.
[12] L. Xu, S. Ling, H. Li, P. Yan, J. Xia, J. Qiu, K. Wang, H. Li, S. Yuan, "Photoelectrochemical monitoring of 4-chlorophenol by plasmonic Au/graphitic carbon nitride composites." Sensors and Actuators B: Chemical 240 (2017) 308-314.
[13] Z. Zhang, D. Jiang, D. Li, M. He, M. Chen, "Construction of SnNb2O6 nanosheet/g-C3N4 nanosheet two-dimensional heterostructures with improved photocatalytic activity: synergistic effect and mechanism insight." Applied Catalysis B: Environmental 183 (2016) 113-123.
[14] J. Wen, J. Xie, H. Zhang, A. Zhang, Y. Liu, X. Chen, X. Li, "Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation." ACS Applied Materials & Interfaces 9 (2017) 14031-14042.
[15] M. Zhang, J. Xu, R. Zong, Y. Zhu, "Enhancement of visible light photocatalytic activities via porous structure of g-C3N4." Applied Catalysis B: Environmental 147 (2014) 229-235.
[16] F. Li, P. Zhu, S. Wang, X. Xu, Z. Zhou, C. Wu, "One-pot construction of Cu and O co-doped porous g-C3N4 with enhanced photocatalytic performance towards the degradation of levofloxacin." RSC advances 9 (2019) 20633-20642.
[17] L. Yang, X. Liu, Z. Liu, C. Wang, G. Liu, Q. Li, X. Feng, "Enhanced photocatalytic activity of g-C3N4 2D nanosheets through thermal exfoliation using dicyandiamide as precursor." Ceramics International 44 (2018) 20613-20619.
[18] Q. Xu, D. Ma, S. Yang, Z. Tian, B. Cheng, J. Fan, "Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation." Applied Surface Science 495 (2019) 143555.
[19] S. Vignesh, S. Chandrasekaran, M. Srinivasan, R. Anbarasan, R. Perumalsamy, E. Arumugam, M. Shkir, H. Algarni, S. AlFaify, "TiO2-CeO2/g-C3N4 S-scheme heterostructure composite for enhanced photo-degradation and hydrogen evolution performance with combined experimental and DFT study." Chemosphere 288 (2022) 132611.
[20] S. Cao, Q. Huang, B. Zhu, J. Yu, "Trace-level phosphorus and sodium co-doping of g-C3N4 for enhanced photocatalytic H2 production." Journal of Power Sources 351 (2017) 151-159.
[21] Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, "Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation." ACS Catalysis 5 (2015) 3058-3066.
[22] L. Liang, Y. Cong, F. Wang, L. Yao, L. Shi, "Hydrothermal pre-treatment induced cyanamide to prepare porous g-C3N4 with boosted photocatalytic performance." Diamond and Related Materials 98 (2019) 107499.
[23] J. Xiao, Y. Xie, F. Nawaz, Y. Wang, P. Du, H. Cao, "Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants." Applied Catalysis B: Environmental 183 (2016) 417-425.
[24] Y. Hong, E. Liu, J. Shi, X. Lin, L. Sheng, M. Zhang, L. Wang, J. Chen, "A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution." international journal of hydrogen energy 44 (2019) 7194-7204.
[25] B. Zhu, P. Xia, W. Ho, J. Yu, "Isoelectric point and adsorption activity of porous g-C3N4." Applied Surface Science 344 (2015) 188-195.
[26] S. Fang, K. Lv, Q. Li, H. Ye, D. Du, M. Li, "Effect of acid on the photocatalytic degradation of rhodamine B over g-C3N4." Applied Surface Science 358 (2015) 336-342.
[27] Z. Zhu, H. Pan, M. Murugananthan, J. Gong, Y. Zhang, "Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2." Applied Catalysis B: Environmental 232 (2018) 19-25.
[28] J. Oh, J.M. Lee, Y. Yoo, J. Kim, S.-J. Hwang, S. Park, "New insight of the photocatalytic behaviors of graphitic carbon nitrides for hydrogen evolution and their associations with grain size, porosity, and photophysical properties." Applied Catalysis B: Environmental 218 (2017) 349-358.
[29] A. Mohammad, M.E. Khan, M.H. Cho, T. Yoon, "Fabrication of binary SnO2/TiO2 nanocomposites under a sonication-assisted approach: Tuning of band-gap and water depollution applications under visible light irradiation." Ceramics International 47 (2021) 15073-15081.
[30] D. Hernández-Uresti, D. Sanchez-Martinez, L. Torres-Martinez, "Novel visible light-driven PbMoO4/g-C3N4 hybrid composite with enhanced photocatalytic performance." Journal of Photochemistry and Photobiology A: Chemistry 345 (2017) 21-26.
[31] M. Banari, N. Memarian, "Effect of the seed layer on the UV photodetection properties of ZnO nanorods." Materials Science and Engineering: B 272 (2021) 115332.
[32] T. Paul, D. Das, B.K. Das, S. Sarkar, S. Maiti, K.K. Chattopadhyay, "CsPbBrCl2/g-C3N4 type II
heterojunction as efficient visible range photocatalyst." Journal of hazardous materials 380 (2019) 120855.
[33] H. Wang, Z. Sun, Q. Li, Q. Tang, Z. Wu, "Surprisingly advanced CO2 photocatalytic conversion over thiourea derived gC3N4 with water vapor while introducing 200–420nm UV light." Journal of CO2 Utilization 14 (2016) 143–151.
[34] C. Lei, M. Pi, X. Zhu, P. Xia, Y. Guo, F. Zhang, "Highly efficient visible-light photocatalytic performance based on novel AgI/g-C3N4 composite photocatalysts." Chemical Physics Letters 664 (2016) 167-172.
[35] K.S. Sing, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)." Pure and applied chemistry 57 (1985) 603-619.
[36] M. Kruk, M. Jaroniec, "Gas adsorption characterization of ordered organic− inorganic nanocomposite materials." Chemistry of materials 13 (2001) 3169-3183.
[37] I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, "Effect of processing temperature on structure and photocatalytic properties of g-C3N4." Applied Surface Science 358 (2015) 278-286.
[38] D.R. Paul, R. Sharma, S. Nehra, A. Sharma, "Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution." RSC advances 9 (2019) 15381-15391.
[39] F. Hasanvandian, M. Moradi, S.A. Samani, B. Kakavandi, S.R. Setayesh, M. Noorisepehr, "Effective promotion of g–C3N4 photocatalytic performance via surface oxygen vacancy and coupling with bismuth-based semiconductors towards antibiotics degradation." Chemosphere 287 (2022) 132273.
[40] T. Giannakopoulou, I. Papailias, N. Todorova, N. Boukos, Y. Liu, J. Yu, C. Trapalis, "Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal." Chemical Engineering Journal 310 (2017) 571-580.
[41] Q. Shen, C. Wu, Z. You, F. Huang, J. Sheng, F. Zhang, D. Cheng, H. Yang, "g-C3N4 nanoparticle@ porous g-C3N4 composite photocatalytic materials with significantly enhanced photo-generated carrier separation efficiency." Journal of Materials Research 35 (2020) 2148-2157.
[42] A. Rashidizadeh, H. Ghafuri, Z. Rezazadeh, "Improved visible-light photocatalytic activity of g-C3N4/CuWO4 nanocomposite for degradation of methylene blue." Multidisciplinary Digital Publishing Institute Proceedings 41 (2020) 43.
[43] D.-P. Bui, M.-T. Pham, H.-H. Tran, T.-D. Nguyen, T.M. Cao, V.V. Pham, "Revisiting the Key Optical and Electrical Characteristics in Reporting the Photocatalysis of Semiconductors." ACS omega 6 (2021) 27379-27386.
[44] E. Farahi, N. Memarian, "Nanostructured nickel phosphide as an efficient photocatalyst: effect of phase on physical properties and dye degradation." Chemical Physics Letters 730 (2019) 478-484.
[45] S. Khajuee, N. Memarian, "Hydrothermal synthesis of ultrafine SnO2 nanospheres: effect of reaction time on physical properties." The European Physical Journal Plus 136 (2021) 1-12.
[46] E. Farahi, N. Memarian, "Surfactant-assisted synthesis of Ni2P nanostructures: effect of surfactant concentration on photocatalytic activity." The European Physical Journal Plus 137 (2022) 463.
[47] M. Sabarinathan, S. Harish, J. Archana, M. Navaneethan, H. Ikeda, Y. Hayakawa, "Highly efficient visible-light photocatalytic activity of MoS2–TiO2 mixtures hybrid photocatalyst and functional properties." RSC advances 7 (2017) 24754-24763.
[48] M. Epifani, S. Kaciulis, A. Mezzi, D. Altamura, C. Giannini, R. Díaz, C. Force, A. Genç, J. Arbiol, P. Siciliano, "Inorganic photocatalytic enhancement: activated RhB photodegradation by surface modification of SnO2 nanocrystals with V2O5-like species." Scientific reports 7 (2017) 1-13.
[49] R.V. Eldik, K.A. Connors "Chemical Kinetics: The Study of Reaction Rates in Solution." VCH Verlagsgesellschaft Weinheim New York, ISBN 3‐527‐28037‐5, 480 Seiten, Preis: DM 168,–, Wiley Online Library, (1991).
[50] M. Ahmaruzzaman, S.R. Mishra, "Photocatalytic performance of g-C3N4 based nanocomposites for effective degradation/removal of dyes from water and wastewater." Materials Research Bulletin 143 (2021) 111417.
[51] H. Ashiq, N. Nadeem, A. Mansha, J. Iqbal, M. Yaseen, M. Zahid, I. Shahid, "G-C3N4/Ag@ CoWO4: A novel sunlight active ternary nanocomposite for potential photocatalytic degradation of rhodamine B dye." Journal of Physics and Chemistry of Solids 161 (2022) 110437.