Effect of precursor on physical properties and photocatalytic activity of 2D g-C3N4 nanosheets

Document Type : Original Article


1 Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Iran

2 Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden


2-dimensional graphitic carbon nitride (g-C3N4) has specific properties that makes it a desirable candidate for extensive applications. This work provides a systematic study for choosing precursors to prepare g-C3N4 with tailored characteristics. g-C3N4 samples have been prepared by thermal decomposition of different precursors (i.e., melamine, urea, and thiourea). Various characterization techniques such as SEM, EDS, XRD, DRS, BET, and FTIR have been used to determine the physical properties of the prepared samples. SEM analysis showed nanoflake and nanosheet structures with no elemental impurity in EDS analysis. Furthermore, FTIR analysis confirmed the formation of graphitic carbon nitride structure. BET results showed a significant enhancement of specific surface area by a factor of 2.8 for the sample prepared with urea precursor. The photocatalytic activity for rhodamine B (RhB) degradation is also presented. The results revealed that urea-based g-C3N4 could be a promising candidate for photocatalytic applications due to its appropriate physical properties and highest dye removal.


Main Subjects

© 2022 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] A. Kumar, P. Raizada, A. Hosseini-Bandegharaei, V.K. Thakur, V.-H. Nguyen, P. Singh, "C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges." Journal of Materials Chemistry A 9 (2021) 111-153.
[2] H. Jung, T.-T. Pham, E.W. Shin, "Interactions between ZnO nanoparticles and amorphous g-C3N4 nanosheets in thermal formation of g-C3N4/ZnO composite materials: The annealing temperature effect." Applied Surface Science 458 (2018) 369-381.
[3] B. Rhimi, C. Wang, D.W. Bahnemann, "Latest progress in g-C3N4 based heterojunctions for hydrogen production via photocatalytic water splitting: a mini review." Journal of Physics: Energy 2 (2020) 042003.
[4] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, "A metal-free polymeric photocatalyst for hydrogen production from water under visible light." Nature materials 8 (2009) 76-80.
[5] J. Wang, S. Wang, "A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application." Coordination Chemistry Reviews 453 (2022) 214338.
[6] L. Bai, H. Huang, S. Yu, D. Zhang, H. Huang, Y. Zhang, "Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors." Journal of Energy Chemistry 64 (2022) 214-235.
[7] G. Nabi, N. Malik, W. Raza, "Degradation effect of temperature variation and dye loading g-C3N4 towards organic dyes." Inorganic Chemistry Communications 119 (2020) 108050.
[8] J. Wena, J. Xie, X. Chen, X. Li, "A review on g-C3N4-based photocatalysts." Applied Surface Science 391 (2017) 72-123.
[9] W.r. Lee, Y.S. Jun, J. Park, G.D. Stucky, "Crystalline poly (triazine imide) based g-CN as an efficient electrocatalyst for counter electrodes of dye-sensitized solar cells using a triiodide/iodide redox electrolyte." Journal of Materials Chemistry A 3 (2015) 24232-24236.
[10] Y. Ishida, L. Chabanne, M. Antonietti, M. Shalom, "Morphology control and photocatalysis enhancement by the one-pot synthesis of carbon nitride from preorganized hydrogen-bonded supramolecular precursors." Langmuir 30 (2014) 447-451.
[11] L. Lin, P. Ye, C. Cao, Q. Jin, G.-S. Xu, Y.-H. Shen, Y.-P. Yuan, "Rapid microwave-assisted green production of a crystalline polyimide for enhanced visible-light-induced photocatalytic hydrogen production." Journal of Materials Chemistry A 3 (2015) 10205-10208.
[12] L. Xu, S. Ling, H. Li, P. Yan, J. Xia, J. Qiu, K. Wang, H. Li, S. Yuan, "Photoelectrochemical monitoring of 4-chlorophenol by plasmonic Au/graphitic carbon nitride composites." Sensors and Actuators B: Chemical 240 (2017) 308-314.
[13] Z. Zhang, D. Jiang, D. Li, M. He, M. Chen, "Construction of SnNb2O6 nanosheet/g-C3N4 nanosheet two-dimensional heterostructures with improved photocatalytic activity: synergistic effect and mechanism insight." Applied Catalysis B: Environmental 183 (2016) 113-123.
[14] J. Wen, J. Xie, H. Zhang, A. Zhang, Y. Liu, X. Chen, X. Li, "Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation." ACS Applied Materials & Interfaces 9 (2017) 14031-14042.
[15] M. Zhang, J. Xu, R. Zong, Y. Zhu, "Enhancement of visible light photocatalytic activities via porous structure of g-C3N4." Applied Catalysis B: Environmental 147 (2014) 229-235.
[16] F. Li, P. Zhu, S. Wang, X. Xu, Z. Zhou, C. Wu, "One-pot construction of Cu and O co-doped porous g-C3N4 with enhanced photocatalytic performance towards the degradation of levofloxacin." RSC advances 9 (2019) 20633-20642.
[17] L. Yang, X. Liu, Z. Liu, C. Wang, G. Liu, Q. Li, X. Feng, "Enhanced photocatalytic activity of g-C3N4 2D nanosheets through thermal exfoliation using dicyandiamide as precursor." Ceramics International 44 (2018) 20613-20619.
[18] Q. Xu, D. Ma, S. Yang, Z. Tian, B. Cheng, J. Fan, "Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation." Applied Surface Science 495 (2019) 143555.
[19] S. Vignesh, S. Chandrasekaran, M. Srinivasan, R. Anbarasan, R. Perumalsamy, E. Arumugam, M. Shkir, H. Algarni, S. AlFaify, "TiO2-CeO2/g-C3N4 S-scheme heterostructure composite for enhanced photo-degradation and hydrogen evolution performance with combined experimental and DFT study." Chemosphere 288 (2022) 132611.
[20] S. Cao, Q. Huang, B. Zhu, J. Yu, "Trace-level phosphorus and sodium co-doping of g-C3N4 for enhanced photocatalytic H2 production." Journal of Power Sources 351 (2017) 151-159.
[21] Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, "Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation." ACS Catalysis 5 (2015) 3058-3066.
[22] L. Liang, Y. Cong, F. Wang, L. Yao, L. Shi, "Hydrothermal pre-treatment induced cyanamide to prepare porous g-C3N4 with boosted photocatalytic performance." Diamond and Related Materials 98 (2019) 107499.
[23] J. Xiao, Y. Xie, F. Nawaz, Y. Wang, P. Du, H. Cao, "Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants." Applied Catalysis B: Environmental 183 (2016) 417-425.
[24] Y. Hong, E. Liu, J. Shi, X. Lin, L. Sheng, M. Zhang, L. Wang, J. Chen, "A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution." international journal of hydrogen energy 44 (2019) 7194-7204.
[25] B. Zhu, P. Xia, W. Ho, J. Yu, "Isoelectric point and adsorption activity of porous g-C3N4." Applied Surface Science 344 (2015) 188-195.
[26] S. Fang, K. Lv, Q. Li, H. Ye, D. Du, M. Li, "Effect of acid on the photocatalytic degradation of rhodamine B over g-C3N4." Applied Surface Science 358 (2015) 336-342.
[27] Z. Zhu, H. Pan, M. Murugananthan, J. Gong, Y. Zhang, "Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2." Applied Catalysis B: Environmental 232 (2018) 19-25.
[28] J. Oh, J.M. Lee, Y. Yoo, J. Kim, S.-J. Hwang, S. Park, "New insight of the photocatalytic behaviors of graphitic carbon nitrides for hydrogen evolution and their associations with grain size, porosity, and photophysical properties." Applied Catalysis B: Environmental 218 (2017) 349-358.
[29] A. Mohammad, M.E. Khan, M.H. Cho, T. Yoon, "Fabrication of binary SnO2/TiO2 nanocomposites under a sonication-assisted approach: Tuning of band-gap and water depollution applications under visible light irradiation." Ceramics International 47 (2021) 15073-15081.
[30] D. Hernández-Uresti, D. Sanchez-Martinez, L. Torres-Martinez, "Novel visible light-driven PbMoO4/g-C3N4 hybrid composite with enhanced photocatalytic performance." Journal of Photochemistry and Photobiology A: Chemistry 345 (2017) 21-26.
[31] M. Banari, N. Memarian, "Effect of the seed layer on the UV photodetection properties of ZnO nanorods." Materials Science and Engineering: B 272 (2021) 115332.
[32] T. Paul, D. Das, B.K. Das, S. Sarkar, S. Maiti, K.K. Chattopadhyay, "CsPbBrCl2/g-C3N4 type II
heterojunction as efficient visible range photocatalyst." Journal of hazardous materials 380 (2019) 120855.
[33] H. Wang, Z. Sun, Q. Li, Q. Tang, Z. Wu, "Surprisingly advanced CO2 photocatalytic conversion over thiourea derived gC3N4 with water vapor while introducing 200–420nm UV light." Journal of CO2 Utilization 14 (2016) 143–151.
[34] C. Lei, M. Pi, X. Zhu, P. Xia, Y. Guo, F. Zhang, "Highly efficient visible-light photocatalytic performance based on novel AgI/g-C3N4 composite photocatalysts." Chemical Physics Letters 664 (2016) 167-172.
[35] K.S. Sing, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)." Pure and applied chemistry 57 (1985) 603-619.
[36] M. Kruk, M. Jaroniec, "Gas adsorption characterization of ordered organic− inorganic nanocomposite materials." Chemistry of materials 13 (2001) 3169-3183.
[37] I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, "Effect of processing temperature on structure and photocatalytic properties of g-C3N4." Applied Surface Science 358 (2015) 278-286.
[38] D.R. Paul, R. Sharma, S. Nehra, A. Sharma, "Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution." RSC advances 9 (2019) 15381-15391.
[39] F. Hasanvandian, M. Moradi, S.A. Samani, B. Kakavandi, S.R. Setayesh, M. Noorisepehr, "Effective promotion of g–C3N4 photocatalytic performance via surface oxygen vacancy and coupling with bismuth-based semiconductors towards antibiotics degradation." Chemosphere 287 (2022) 132273.
[40] T. Giannakopoulou, I. Papailias, N. Todorova, N. Boukos, Y. Liu, J. Yu, C. Trapalis, "Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal." Chemical Engineering Journal 310 (2017) 571-580.
[41] Q. Shen, C. Wu, Z. You, F. Huang, J. Sheng, F. Zhang, D. Cheng, H. Yang, "g-C3N4 nanoparticle@ porous g-C3N4 composite photocatalytic materials with significantly enhanced photo-generated carrier separation efficiency." Journal of Materials Research 35 (2020) 2148-2157.
[42] A. Rashidizadeh, H. Ghafuri, Z. Rezazadeh, "Improved visible-light photocatalytic activity of g-C3N4/CuWO4 nanocomposite for degradation of methylene blue." Multidisciplinary Digital Publishing Institute Proceedings 41 (2020) 43.
[43] D.-P. Bui, M.-T. Pham, H.-H. Tran, T.-D. Nguyen, T.M. Cao, V.V. Pham, "Revisiting the Key Optical and Electrical Characteristics in Reporting the Photocatalysis of Semiconductors." ACS omega 6 (2021) 27379-27386.
[44] E. Farahi, N. Memarian, "Nanostructured nickel phosphide as an efficient photocatalyst: effect of phase on physical properties and dye degradation." Chemical Physics Letters 730 (2019) 478-484.
[45] S. Khajuee, N. Memarian, "Hydrothermal synthesis of ultrafine SnO2 nanospheres: effect of reaction time on physical properties." The European Physical Journal Plus 136 (2021) 1-12.
[46] E. Farahi, N. Memarian, "Surfactant-assisted synthesis of Ni2P nanostructures: effect of surfactant concentration on photocatalytic activity." The European Physical Journal Plus 137 (2022) 463.
[47] M. Sabarinathan, S. Harish, J. Archana, M. Navaneethan, H. Ikeda, Y. Hayakawa, "Highly efficient visible-light photocatalytic activity of MoS2–TiO2 mixtures hybrid photocatalyst and functional properties." RSC advances 7 (2017) 24754-24763.
[48] M. Epifani, S. Kaciulis, A. Mezzi, D. Altamura, C. Giannini, R. Díaz, C. Force, A. Genç, J. Arbiol, P. Siciliano, "Inorganic photocatalytic enhancement: activated RhB photodegradation by surface modification of SnO2 nanocrystals with V2O5-like species." Scientific reports 7 (2017) 1-13.
[49] R.V. Eldik, K.A. Connors "Chemical Kinetics: The Study of Reaction Rates in Solution." VCH Verlagsgesellschaft Weinheim New York, ISBN 3‐527‐28037‐5, 480 Seiten, Preis: DM 168,–, Wiley Online Library, (1991).
[50] M. Ahmaruzzaman, S.R. Mishra, "Photocatalytic performance of g-C3N4 based nanocomposites for effective degradation/removal of dyes from water and wastewater." Materials Research Bulletin 143 (2021) 111417.
[51] H. Ashiq, N. Nadeem, A. Mansha, J. Iqbal, M. Yaseen, M. Zahid, I. Shahid, "G-C3N4/Ag@ CoWO4: A novel sunlight active ternary nanocomposite for potential photocatalytic degradation of rhodamine B dye." Journal of Physics and Chemistry of Solids 161 (2022) 110437.