CoFe2O4 bulk, nanoparticles and layer: A comparison of structural, magnetic, and optical properties

Document Type : Original Article


Faculty of Physics, University of Tabriz, Tabriz, Iran


The structural characteristics of materials change with the reduction of dimensions, and they show different behaviors compared to the corresponding bulk sample. To study these changes, in this research, we investigated the effect of size and preparation method on properties of cobalt ferrite (CoFe2O4). After synthesis of a bulk sample by solid-state reaction method, CoFe2O4 nanoparticles were prepared by two different methods of co-precipitation and thermal decomposition. Then, a layer of CoFe2O4 was prepared by a spin coating method, using a silicon substrate. In the following, the structural, magnetic, and optical properties of samples were studied, and compared. The results confirmed the size and synthesis method dependence behavior of properties of the prepared samples. The nanoparticles synthesized by thermal decomposition method show much higher coercivity compared to those prepared by co-precipitation, while both consist of almost same size distribution. The bulk sample shows the lowest coercivity, but highest saturation magnetization among the samples. On the other hand, the bulk sample has smaller band gap compared to the nanoparticles.


Main Subjects

© 2022 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (

[1] S.Y. Srinivasan, K.M. Paknikar, D. Bodas, V. Gajbhiye, "Applications of cobalt ferrite nanoparticles in biomedical nanotechnology." Nanomedicine 13 (2018) 1221-1238.
[2] S. Amiri, H. Shokrollahi, "The role of cobalt ferrite magnetic nanoparticles in medical science." Materials Science and Engineering: C 33 (2013) 1-8.
[3] K. Maaz, A. Mumtaz, S. Hasanain, A. Ceylan, "Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route." Journal of magnetism and magnetic materials 308 (2007) 289-295.
[4] L. Phua, F. Xu, Y. Ma, C. Ong, "Structure and magnetic characterizations of cobalt ferrite films prepared by spray pyrolysis." Thin Solid Films 517 (2009) 5858-5861.
[5] A. Salunkhe, V. Khot, M.R. Phadatare, S. Pawar, "Combustion synthesis of cobalt ferrite nanoparticles—Influence of fuel to oxidizer ratio." Journal of alloys and compounds 514 (2012) 91-96.
[6] P.D. Thang, G. Rijnders, D.H. Blank, "Spinel cobalt ferrite by complexometric synthesis." Journal of magnetism and magnetic materials 295 (2005) 251-256.
[7] S.H. Xiao, W.F. Jiang, L.Y. Li, X.J. Li, "Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder." Materials Chemistry and Physics 106 (2007) 82-87.
[8] A. Ahlawat, V. Sathe, "Raman study of NiFe2O4 nanoparticles, bulk and films: effect of laser power." Journal of Raman Spectroscopy 42 (2011) 1087-1094.
[9] B. Aslibeiki, P. Kameli, M. Ehsani, "MnFe2O4 bulk, nanoparticles and film: A comparative study of structural and magnetic properties." Ceramics International 42 (2016) 12789-12795.
[10] E. Fitriyanti, B. Purnama, "Comparison XRD pattern of CoFe2O4 thin films and nanoparticles." Journal of Physics: Conference Series IOP Publishing (2017) 012010.
[11] B. Aslibeiki, P. Kameli, H. Salamati, "The effect of grinding on magnetic properties of agglomereted MnFe2O4 nanoparticles." Journal of magnetism and magnetic materials 324 (2012) 154-160.
[12] B. Aslibeiki, N. Eskandarzadeh, H. Jalili, A. Ghotbi Varzaneh, P. Kameli, I. Orue, V. Chernenko, A. Hajalilou, L.P. Ferreira, M.M. Cruz, "Magnetic hyperthermia properties of CoFe2O4 nanoparticles: Effect of polymer coating and interparticle interactions." Ceramics International 48 (2022) 27995-28005.
[13] B. Aslibeiki, P. Kameli, M.H. Ehsani, H. Salamati, G. Muscas, E. Agostinelli, V. Foglietti, S. Casciardi, D. Peddis, "Solvothermal synthesis of MnFe2O4 nanoparticles: The role of polymer coating on morphology and magnetic properties." Journal of Magnetism and Magnetic Materials 399 (2016) 236-244.
[14] B. Aslibeiki, P. Kameli, "Magnetic properties of MnFe2O4 nano-aggregates dispersed in paraffin wax." Journal of Magnetism and Magnetic Materials 385 (2015) 308-312.
[15] H. Jalili, B. Aslibeiki, A.G. Varzaneh, V.A. Chernenko, "The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles." Beilstein journal of nanotechnology 10 (2019) 1348-1359.
[16] B. Aslibeiki, P. Kameli, H. Salamati, G. Concas, M.S. Fernandez, A. Talone, G. Muscas, D. Peddis, "Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions." Beilstein journal of nanotechnology 10 (2019) 856-865.
[17] D. Erdem, N.S. Bingham, F.J. Heiligtag, N. Pilet, P. Warnicke, L.J. Heyderman, M. Niederberger, "CoFe2O4 and CoFe2O4-SiO2 Nanoparticle Thin Films with Perpendicular Magnetic Anisotropy for Magnetic and Magneto-Optical Applications." Advanced Functional Materials 26 (2016) 1954-1963.
[18] B. Aslibeiki, Nanostructural, "magnetic and electrical properties of Ag doped Mn-ferrite nanoparticles." Current Applied Physics 14 (2014) 1659-1664.
[19] B. Aslibeiki, P. Kameli, "Effect of ZnO on Structural and Magnetic Properties of MnFe2O4/ZnO Nanocomposite." Journal of Superconductivity and Novel Magnetism 28 (2015) 3343-3350.
[20] E. Fantechi, G. Campo, D. Carta, A. Corrias, C. de Julián Fernández, D. Gatteschi, C. Innocenti, F. Pineider, F. Rugi, C. Sangregorio, "Exploring the effect of Co doping in fine maghemite nanoparticles." The Journal of Physical Chemistry C 116 (2012) 8261-8270.
[21] L. Hu, C. de Montferrand, Y. Lalatonne, L. Motte, A. Brioude, "Effect of cobalt doping concentration on the crystalline structure and magnetic properties of monodisperse CoxFe3–xO4 nanoparticles within nonpolar and aqueous solvents." The Journal of Physical Chemistry C 116 (2012) 4349-4355.
[22] X. Li, C. Kutal, "Synthesis and characterization of superparamagnetic CoxFe3−xO4 nanoparticles." Journal of alloys and compounds 349 (2003) 264-268.
[23] P. Prieto, J.F. Marco, J.E. Prieto, S. Ruiz-Gomez, L. Perez, P. Rafael, M. Vázquez, J. de la Figuera, "Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers." Applied Surface Science 436 (2018) 1067-1074.
[24] G.C. Lavorato, E. Lima Jr, D. Tobia, D. Fiorani, H.E. Troiani, R.D. Zysler, E.L. Winkler, "Size effects in bimagnetic CoO/CoFe2O4 core/shell nanoparticles." Nanotechnology 25 (2014) 355704.
[25] B. Aslibeiki, "Magnetic interactions and hysteresis loops study of Co/CoFe2O4 nanoparticles." Ceramics International 42 (2016) 6413-6421.
[26] M.H. Habibi, H.J. Parhizkar, "FTIR and UV–vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe2O4 from CoCl2 and FeCl3." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 127 (2014) 102-106.
[27] V. Jeseentharani, M. George, B. Jeyaraj, A. Dayalan, K. Nagaraja, "Synthesis of metal ferrite (MFe2O4, M= Co, Cu, Mg, Ni, Zn) nanoparticles as humidity sensor materials." Journal of experimental nanoscience 8 (2013) 358-370.
[28] H. Nikmanesh, P. Kameli, S.M. Asgarian, S. Karimi, M. Moradi, Z. Kargar, J. Ventura, B. Bordalo, H. Salamati, "Positron annihilation lifetime, cation distribution and magnetic features of Ni1−xZnxFe2−xCoxO4 ferrite nanoparticles." RSC Advances 7 (2017) 22320-22328.
[29] H. Wang, J. Huang, L. Ding, D. Li, Y. Han, "A facile synthesis of monodisperse CoFe2O4/SiO2 nanoparticles." Applied surface science 257 (2011) 7107-7112.
[30] J. Zhang, J. Wan, S. Huang, J. Du, J. Zhu, D. Zhang, Q. Yin, Y. Wu, "Solvothermal synthesis and magnetic property of magnetic chains self‐assembled by Fe3O4 microoctahedrons." Chinese Journal of Chemistry 28 (2010) 1607-1612.
[31] P. Dutta, S. Pal, M. Seehra, N. Shah, G. Huffman, "Size dependence of magnetic parameters and surface disorder in magnetite nanoparticles." Journal of Applied Physics 105 (2009) 07B501.
[32] D. Sharma, N. Khare, "Tailoring the optical bandgap and magnetization of cobalt ferrite thin films through controlled zinc doping." AIP Advances 6 (2016) 085005.
[33] A. Sathya, P. Guardia, R. Brescia, N. Silvestri, G. Pugliese, S. Nitti, L. Manna, T. Pellegrino, "CoxFe3–xO4 nanocubes for theranostic applications: effect of cobalt content and
particle size." Chemistry of Materials 28 (2016) 1769-1780.
[34] H. Jalili, B. Aslibeiki, A. Hajalilou, O. Musalu, L.P. Ferreira, M.M. Cruz, "Bimagnetic hard/soft and soft/hard ferrite nanocomposites: Structural, magnetic and hyperthermia properties." Ceramics International 48 (2022) 4886-4896.
[35] B. Aslibeiki, G. Varvaro, D. Peddis, P. Kameli, "Particle size, spin wave and surface effects on magnetic properties of MgFe2O4 nanoparticles." Journal of Magnetism and Magnetic Materials 422 (2017) 7-12.
[36] B. Aslibeiki, P. Kameli, H. Salamati, "Nanomagnetism." Iranian Journal of Physics Research 16 (2019) 251-272.
[37] M. Lenglet, F. Hochu, J. Dürr, "Optical properties of mixed cobalt ferrites." Le Journal de Physique IV 7 (1997) C1-259-C251-260.
[38] G. Pandey, S. Dixit, "Growth mechanism and optical properties determination of CdS nanostructures." The Journal of Physical Chemistry C 115 (2011) 17633-17642.
[39] R. Torkamani, B. Aslibeiki, H. Naghshara, M. Darbandi, "Structural and optical properties of ZnO nanorods: The effect of concentration and pH of the growth solution." Optical Materials 127 (2022) 112295.