[1] K. Kaneko, "Determination of pore size and pore size distribution: 1. Adsorbents and catalysts." Journal of membrane science 96 (1994) 59-89.
[2] D. M. Antonelli, J. Y. Ying, "Mesoporous materials." Current Opinion in Colloid & Interface Science 1 (1996) 523-529.
[3] K. Ajay, M. Dinesh, G. Byatarayappa, M. Radhika, N. Kathyayini, H. Vijeth, "Electrochemical investigations on low cost KOH activated carbon derived from orange-peel and polyaniline for hybrid supercapacitors." Inorganic Chemistry Communications 127 (2021) 108523.
[4] T. Mays, "A new classification of pore sizes." Characterization of Porous Solids 160 (2007) 57-62.
[5] B. Li, H. Xiong, and Y. Xiao, "Progress on synthesis and applications of porous carbon materials." Int. J. Electrochem. Sci 15 (2020) 1363-1377.
[6] T. Kesavan, T. Partheeban, M. Vivekanantha, M. Kundu, G. Maduraiveeran, M. Sasidharan, "Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor." Microporous and Mesoporous Materials 274 (2019) 236-244.
[7] S. De, A. M. Balu, J. C. Van Der Waal, R. Luque,"Biomass‐derived porous carbon materials: synthesis and catalytic applications." ChemCatChem 7 (2015) 1608-1629.
[8] X.-L. Zhou, H. Zhang, L.-M. Shao, F. Lü, P. J. He, "Preparation application of hierarchical porous carbon materials from waste biomass: A review." Waste and Biomass Valorization 12 (2021) 1699-1724.
[9] B. Chang, Y. Guo, Y. Li, H. Yin, S. Zhang, B. Yang, X. Dong, "Graphitized hierarchical porous carbon nanospheres: simultaneous activation/graphitization and superior supercapacitance performance." Journal of Materials Chemistry 3 (2015) 9565-9577.
[10] Y.T. Li, Y.T. Pi, L.M. Lu, S.H. Xu, T.Z. Ren, "Hierarchical porous active carbon from fallen leaves by synergy of K2CO3 and their supercapacitor performance." Journal of Power Sources 299 (2015) 519-528.
[11] L. Wang, X. Hu, "Recent advances in porous carbon materials for electrochemical energy storage." Chemistry–An Asian Journal 13 (2018) 1518-1529.
[12] B. Li, H. Xiong, Y. Xiao, "Progress on synthesis and applications of porous carbon materials." Int. J. Electrochem. Sci 15 (2020) 1363-1377
[13] J. Lee, J. Kim, T. Hyeon, "Recent progress in the synthesis of porous carbon materials." Advanced materials 18 (2006) 2073-2094.
[14] X. Yang, C. Li, Y. Chen, "Hierarchical porous carbon with ultrahigh surface area from corn leaf for high-performance supercapacitors application." Journal of Physics D: Applied Physics 50 (2017) 055501.
[15] F. Xu, G. Nava, P. Biswas, I. Dulalia, H. Wang, Z. Alibay, M. Gale, D. J. Kline, B. Wagner, L. Mangolini, "Energetic characteristics of hydrogenated amorphous silicon nanoparticles." Chemical Engineering Journal 430 (2022) 133140.
[16] M. Vallet-Regí, "Our contributions to applications of mesoporous silica nanoparticles." Acta Biomaterialia 137 (2022) 44-52.
[17] A. R. Albooyeh, A. Dadrasi, A. H. Mashhadzadeh, "Effect of point defects and low-density carbon-doped on mechanical properties of BNNTs: A molecular dynamics study." Materials Chemistry and Physics 239 (2020) 122107.
[18] L. Zhang, M. Kai, X. Chen, "Si-doped graphene in geopolymer: Its interfacial chemical bonding, structure evolution and ultrastrong reinforcing ability." Cement and Concrete Composites 109 (2020) 103522.
[19] J.I. Kim, Y.J. Jang, J. Kim, J. Kim, "Effects of silicon doping on low-friction and high-hardness diamond-like carbon coating via filtered cathodic vacuum arc deposition." Scientific reports 11 (2021) 1-13.
[20] R. Zarei Moghadam, H. Rezagholipour Dizaji, M. Ehsani, "Modification of optical and mechanical properties of nitrogen doped diamond-like carbon layers." Journal of Materials Science: Materials in Electronics 30 (2019) 19770-19781.
[21] A. S. Chaus, X. H. Jiang, P. Pokorný, D. G. Piliptsou, A. V. Rogachev, "Improving the mechanical property of amorphous carbon films by silicon doping. " Diamond and Related Materials 82 (2018) 137-142.
[22] P. Sikora, M. Abd Elrahman, S.Y. Chung, K. Cendrowski, E. Mijowska, D. Stephan, "Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature." Cement and Concrete Composites 95 (2019)193-204.
[23] J. Fu, M. Zhang, L. Jin, L. Liu, N. Li, L. Shang, M. Li, L. Xiao, Y. Ao, "Enhancing interfacial properties of carbon fibers reinforced epoxy composites via Layer-by-Layer self assembly GO/SiO2 multilayers films on carbon fibers surface." Applied Surface Science 470 (2019) 543-554.
[24] G. Divya, B. Suresha, "Impact of nano-silicon dioxide on mechanical properties of carbon fabric reinforced epoxy composites." Materials Today: Proceedings 46 (2021) 8999-9003.
[25] J. Roche, "Introducing electric fields." Physics Education 51 (2016) 055005.
[26] J. Gao, Y. He, X. Gong, "Effect of electric field induced alignment and dispersion of functionalized carbon nanotubes on properties of natural rubber." Results in Physics 9 (2018) 493-499.
[27] M. P. Allen, D. J. Tildesley, "Computer simulation of liquids." Oxford university press (2017).
[28] T. Hansson, C. Oostenbrink, W. van Gunsteren, "Molecular dynamics simulations." Current opinion in structural biology 12 (2002) 190-196.
[29] J. M. Haile, "Molecular dynamics simulation: elementary methods." John Wiley & Sons, Inc. (1992).
[30] T. Han, Y. Luo, C. Wang, "Effects of SI, N and B doping on the mechanical properties of graphene sheets." Acta Mechanica Solida Sinica 28 (2015) 618-625.
[31] M. H. Rahman, S. Mitra, M. Motalab, P. Bose, "Investigation on the mechanical properties and fracture phenomenon of silicon doped graphene by molecular dynamics simulation." RSC advances 10 (2020) 31318-31332.
[32] Y. Zhao, G. Xie, J. Zhao, C. Wang, C. Tang, "Modifying mechanical properties of silicon dioxide using porous graphene: molecular dynamics simulations." Materials Research Express 8 (2021) 055012.
[33] S. Wei, X. Li, Y. Shen, L. Zhang, X. Wu, "Study on microscopic mechanism of nano-silicon dioxide for improving mechanical properties of polypropylene." Molecular Simulation 46 (2020) 468-475.
[34] B.J. Alder, T.E. Wainwright, "Studies in molecular dynamics. I. General method." The Journal of Chemical Physics 31 (1959) 459-466.
[35] W. C. Swope, H. C. Andersen, P. H. Berens, K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters." The Journal of chemical physics 76 (1982) 637-649.
[36] E. Hairer, C. Lubich, G. Wanner, "Geometric numerical integration illustrated by the Störmer–Verlet method." Acta numerica 12 (2003) 399-450.
[37] L. Verlet, "Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules." Physical review 159 (1967) 98.
[38] W. C. Swope, H. C. Andersen, P. H. Berens, K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters." The Journal of chemical physics 76 (1982) 637-649.
[39] E. Hairer, C. Lubich, G. Wanner, "Geometric numerical integration illustrated by the Störmer–Verlet method." Acta numerica 12 (2003) 399-450.
[40] J. Tersoff, "Empirical interatomic potential for silicon with improved elastic properties." Physical Review B 38 (1988) 9902.
[41] J. Tersoff, "Empirical interatomic potential for carbon, with applications to amorphous carbon." Physical Review Letters 61 (1988) 2879.
[42] Y. Guo, W. Guo, "Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field." Journal of physics D: Applied physics 36 (2003) 805.