Structural and physical properties of Co1-xCdxFe2O4 /SiO2 nanocomposites

Document Type : Original Article


1 Department of Physics, Malayer University, Malayer, Iran

2 Department of Physics, Farhangian University, Tehran 1998963341, Iran


The preparation of Co1-xCdxFe2O4/SiO2 nanocomposites with core/ shell structure involved the coating of SiO2 using Stöber method on Co1-xCdxFe2O4 and the use of facile thermal treatment method for synthesizing nanoparticles. The effect of cadmium substitution and SiO2 coating on the degree of crystallinity, samples composition, microstructure, and phase composition were conducted by X-ray diffraction (XRD), energy dispersion X-ray analysis (EDXA), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FT-IR), respectively. Magnetic properties were demonstrated by a vibrating sample magnetometer (VSM) which displayed that Co-Cd ferrite nanoparticles and coated silica samples exhibited magnetic behaviors. In investigating the influence of cadmium substitution and the SiO2 coating on the band gap energy (Eg), a more accurate method was used in evaluating the band gap energy (Eg). The method of evaluation is a recently proposed one known as derivation of absorption spectrum fitting (DASF) which involves the direct absorption spectra of UV-Visible region, without any need for the concentration of powders or solutions.


Main Subjects

© 2022 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (

[1] P. Vlazan, I. Miron, P. Sfirloaga, Cobalt ferrite substituted with Mn: Synthesis method, characterization and magnetic properties, Ceram. Int. 41 (2015) 3760-3765.
[2] E. Naderi, M. Naseri, H. Taimouri Rad, R. Zolfaghari Emameh, G. Farnoosh, A. Taheri1, In vivo and In vitro Biocompatibility Study of Fe3O4@ZnO and Fe3O4@SiO2 as Photosensitizer for Targeted Breast Cancer Drug Delivery, J. Sci. I. R. Iran. 31 (2020) 357 - 368.
[3] M. Naseri, Optical and magnetic properties of monophasic cadmium ferrite (CdFe2O4) nanostructure prepared by thermal treatment method, J. Magn. Magn. Mater. 392 (2015) 107-13.
[4] M. G. Naseri, E. B. Saion, H. A. Ahangar, A. H. Shaari, M. Hashim, Simple Synthesis and Characterization of Cobalt Ferrite Nanoparticles by a Thermal Treatment Method, J. Nanomater. 2010 (2010) 1-8.
[5] J. Z. Msomi, Structural and magnetic changes induced by high energy ball milling of CdFe2O4, J. Magn. Magn. Mater. 336 (2013) 61-65.
[6] M. G. Naseri, E. B. Saion, M. Hashim, A. H. Shaari, H. A. Ahangar, Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method, Solid. State. Commun. 151 (2011) 1031-1035.
[7] R. G. Chaudhuri and S. Paria, Core/Shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev.112 (2012) 2373-2433.
[8] M. E. Khosroshahi, L. Ghazanfari, Preparation and characterization of silica-coated iron-oxide bionanoparticles under N2 gas, Physica E Low Dimens. Syst. Nanostruct. 42 (2010) 1824-1829.
[9] L. Wang, K. G. Neoh, E. T. Kang, and B. Shuter, Multifunctional polyglycerol-grafted Fe₃O₄@SiO₂ nanoparticles for targeting ovarian cancer cells, Biomater. 32 (2011) 2166-73.
[10] M. Chireh, M. Naseri, Effect of calcination temperature on the physical properties of LiFe5O8 nanostructures, J. Adv. Pow. Tech. 30 (2019) 952-96022.
[11] B. J. Jankiewicz, D. Jamiola, J. Choma, M. Jaroniec, Silica– metal core–shell nanostructures, Adv. Colloid. Interface. Sci. 170 (2012) 28-47.
[12] J. M. Li, L. Wang, Z. H. Bai, J. Li, J. B. Lu, H. B. Li, Magnetic and Mössbauer spectroscopy studies of NiAl0.2Fe1.8O4/SiO2 nanocomposites synthesized by sol–gel method, J. Magn. Magn. Mater. 354 (2014) 190-
[13] D. Díaz, R. Bartolo, D.M. Delgadillo, F. Higueldo & J.C. Gomora, Contrasting Effects of Cd2+ and Co2+ on the Blocking/Unblocking of Human Cav3 Channels, J. Membr. Biol. 207 (2005) 91-105.
[14] R. Rani , P. Dhiman, S. K. Sharma &M. Singh, Structural and Magnetic Studies of Co0.6Zn0.4Fe2O4 nanoferrite synthesized by solution combustion method, Metal- Organic. Nano-Metal. Chem. 42 (2012) 360–363.
[15] M. G. Naseri, E. B. Saion, H. A. Ahangar, A. H. Shaari, Fabrication, characterization, and magnetic properties of copper ferrite nanoparticles prepared by a simple, thermal-treatment method, Mater. Res. Bull. 48 (2013) 1439-1446.
[16] H. SikChae, S. Deuk Kim, S. HaoPiao, H. J. Cho, Core-shell structured Fe3O4@SiO2 nanoparticles fabricated by sol–gel method and their magnetorheology, Colloid. Polym. Sci. 294 (2016) 647-655.
[17] A. Jamil, M. F. Afsar, F. Sher, M. A. Rafiq, Temperature and composition dependent density of states extracted using overlapping large polaron tunnelling model in MnxCo1−xFe2O4 (x=0.25, 0.5, 0.75) nanoparticles, Phys.
B: Condens. Matter. 509 (2017) 76-83.
[18] C. Venkata Reddy, C. Byon, B. Narendra, D. Baskar, G. Srinivas, J. Shim, S.V. Prabhakar Vattikuti, Investigation of structural, thermal and magnetic properties of cadmium substituted cobalt ferrite nanoparticles, Superlattice Microst. 82 (2015) 165-173.
[19] L. Wang, M. Lu, Y. Liu, J. Li, M. Liu, H. Li, The structure, magnetic properties and cation distribution of Co1- xMgxFe2O4/SiO2 nanocomposites synthesized by sol– gel method, Ceram. Int. 41 (2015) 4176-4181.
[20] K. R. Awad, M. M. S. Wahsh, A. G. M. Othman, E Girgis, M.
R. Mabroukand Fatma, A. Morsy, Effect of Mn2+ doping and SiO2 coating on magneto-optical properties of CoFe2O4, Smart Mater. Struct. 24 (2015) 115002-
[21] M. G. Naseri, M. H. Majles Ara, E. B. Saion, A. H. Shaari, Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method, J. Magn. Magn. Mater. 350 (2014) 141-147.
[22] S. Kobayashi, T. Yamaminami, H. Sakakura, M. Takeda, T. Yamada, H. Sakuma, S. B. Trisnanto, S. Ota, Y. Takemura, Magnetization Characteristics of Oriented Single- Crystalline NiFe-Cu Nanocubes Precipitated in a Cu-Rich Matrix, Molecules. 25 (2020) 1-10.
[23] J. Massoudi, M. Smari, K. Nouric, E. Dhahri, K. Khirounid,
S. Bertainae, L. Bessaisc, E. Kebir Hlil, Magnetic and
spectroscopic properties of Ni-Zn-Al ferrite spinel: from the nanoscale to microscale, RSC Adv. 10 (2020) 34556-
[24] H. Sozeri, Z. Durmus, A. Baykal, Structural and magnetic properties of triethylene glycol stabilized ZnxCo1- xFe2O4 nanoparticles, Mater. Res. Bull. 47 (2012) 2442-
[25] H. Ghorbani, M. Eshraghi , A. Sabouridodaran, Magnetic properties of Co0.9Cd0.1Fe1.9X0.1O4 (X = Cr, Yb) nanoparticles prepared by hydrothermal method, Prog. physi. appl. mater. 1 (2021) 50-56.
[26] C. Choodamani, G.P. Nagabhushana, S. Ashoka, B. DarukaPrasad, B. Rudraswamy, G.T. Chandrappa, Structural and magnetic studies of Mg1−xZnxFe2O4 nanoparticles prepared by a solution combustion method, J. Alloys Compd. 578 (2013) 103-109.
[27] H. Hamad, M. Abd El-Latif, A. H. Kashyout, W. Sadikand, M. Feteha, Synthesis and characterization of core–shell–shell magnetic (CoFe2O4–SiO2–TiO2) nanocomposites and TiO2 nanoparticles for the evaluation of photocatalytic activity under UV and visible irradiation, New J Chem. 39 (2015) 3116-3128.
[28] M. Naseri, A. Kamalianfar, E. Naderi, A. Hashemi, The effect of Ag nanoparticles on physical and photocatalytic properties of ZnFe2O4/SiO2 nanocomposite, J. Mol. Struct. 1206 (2020) 127706.
[29] M. Atif, R. Sato Turtelli, R. Grössinger, M. Siddique, M. Nadeem, Effect of Mn substitution on the cation distribution and temperature dependence of magnetic anisotropy constant in Co1−xMnxFe2O4 (0.0≤x≤0.4) ferrites, Ceram. Int. 40 (2014) 471-478.
[30] K. Praveena, K. Sadhana, S. Ramana Murthy, Structural and magnetic properties of NiCuZn ferrite/SiO2 nanocomposites, J. Magn. Magn. Mater. 323 (2011) 2122-2128.
[31] W. Pon-On, N. Charoenphandhu, I-Ming Tang, P. Jongwattanapisan, N. Krishnamra, R. Hoonsawat, Encapsulation of magnetic CoFe2O4 in SiO2 nanocomposites using hydroxyapatite as templates: A drug delivery system, Mater. Chem. Phys. 131 (2011) 485-494.
[32] C. Singh, A. Goyal, S. Bansal, S. Singhal, SiO2@MFe2O4 core-shell nanostructures: Efficient photocatalysts with excellent dispersion properties, Mater. Res. Bull. 85 (2017) 109-120.
[33] F. Miao, Z. Deng, X. Lv, G. Gu, S. Wan, X. Fang, Q. Zhang, Sh. Yin, Fundamental properties of CdFe2O4 semiconductor thin film, Solid. State. Commun. 150 (2010) 2036-2039.
[34] D. Souri, Z. E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors, Appl. Phys. B: Lasers Opt. 119 (2015) 273-279
[35] D. Souri, A. R.Khezripour, M. Molaei, M.Karimipour; ZnSe and copper-doped ZnSe
nanocrystals (NCs): optical transmittance and precise determination of energy band gap
beside their exact optical transition type and Urbch energy; Current. Appl. Phys. 17 (2017) 41-46.
[36] P. A. Vinosha, L. AnselMely, J. E. Jeronsia, K. Raja, D. Queen SahayaTamilarsi, F. Alison christina, S. Krishnan, S. Jerome Das, Investigation of optical, electrical and magnetic properties of cobalt ferrite nanoparticles by naive co-precipitation technique, Optik. 127 (2016)
[37] V. Etacheri, C. D. Valentin, J. Schneider, D. Bahnemann, C.
P. J. Suresh, Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments, J. Photochem. Photobiol. C. 25 (2015) 1-29.
[38] E. Vella, F. Messina, M. Cannas, R. Boscaino, Unraveling exciton dynamics in amorphous silicon dioxide: Interpretation of the optical features from 8 to 11 eV, Phys. Rev. B Condens. Matter. 83 (2011) 174201.