Oxygen and nitrogen doped diamond-like carbon thin films: A comparative study

Document Type : Original Article


1 Department of Physics, Faculty of Science, Arak University,38156-8 8349 Arak, Iran

2 Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Iran


DLC films were deposited on Si substrates using direct ion beam deposition method, followed by investigating the influence of O2 and N2 doping on their electrical and structural properties. The films were doped with oxygen and nitrogen under flow rates of 5 and 40 sccm (standard cubic centimeters per minute). The structure of the films was studied by Raman spectroscopy.  Result showed that by increasing oxygen incorporation, sp2 content decreases, sp3 content increases, and the C-C bonding loses its order. As the size of the sp2-rich cluster increased with N2 content, the disorder in the DLC samples decreased, leading to a decrease in the FWHM of the G peak. The water contact angle measurement showed that an increase in oxygen flow ratio results in a decrease in contact angle from 82.9° ± 2.1° to 50° ± 3°. With increasing nitrogen flow rate from 5 to 40, the contact angle of DLC thin films increased from 78° to 110°.


Main Subjects

© 2022 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] R. Zarei Moghadam, M. H. Ehsani, H. Rezagholipour Dizaji, P.
Kameli and M. Jannesari, Modification of hydrophobicity
properties of diamond like carbon films using glancing
angle deposition method, Mater. Lett. 220 (2018) 301-
[2] M. K. Kuntumalla, V. V. S. S. Srikanth, S. Ravulapalli, U.
Gangadharini, H. Ojha, N. R. Desai C. Bansal, SERS activity
of Ag decorated nanodiamond and nano-β-SiC,
diamond-like-carbon and thermally annealed diamond
thin film surfaces, Chem. Phys. 17 (2015) 21331-21336.
[3] J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, W. I. Milne, Diamond and diamond-like carbon MEMS, J. Micromech. Microeng. 17 (2007) 147-163.
[4] N. K. Aushik, P. Sharma, M. Nishijima, A. Makino, M. Esashi, S. Tanaka, Structural, mechanical and optical properties of thin films deposited from a graphitic carbon nitride target, Diamond. Relat. Mater. 66 (2016) 149-156.
[5] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R. 37 (2002) 129–281.
[6] P. Wang, T. Takeno, J. Fontaine, M. Aono, K. Adachi, H. Miki, T. Takagi, Effects of substrate bias voltage and target sputtering power on the structural and tribiological properties of carbon nitride coatings, Mater. Chem. Phys. 145 (2014) 434–440.
[7] K. Zhou, P. Ke, X. Li, Y. Zou, A. Wang, Microstructure and electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique, Appl. Surf. Sci. 329 (2015) 281-286.
[8] M. Ikeyama, S. Nakao, Y. Miyagawa, S. Miyagawa, Effects of Si content in DLC films on their friction and wear properties, Surf. Coat. Technol. 191 (2005) 38–42.
[9] Sk. F. Ahmed, D. Banerjee, K. K. Chattopadhyay, The influence of fluorine doping on the optical properties of diamond-like carbon thin films, Vacuum. 84 (2010) 837-842.
[10] N. Nakamura, T. Itani, H. Chiba, K. Watanabe, K. Kurihara, Effects of O2 Gas Addition on Diamond-Like Carbon Film Deposition MRS Online Proceedings Library Archive, (1999) 593.
[11] M. S. Hwang, C. Lee, Effects of oxygen and nitrogen addition on the optical properties of diamond-like carbon films, Mater. Sci. Eng. B. 75 (2000) 24-28.
[12] S. F. Durrant, S. G. Castro, J. I. Cisneros, N. C. da Cruz, M. A. Bica de Moraes, Amorphous oxygen‐containing hydrogenated carbon films formed by plasma enhanced chemical vapor deposition, J. Vac. Sci. Technol. A. 14 (1996) 118-124.
[13] G. Adamopoulos, C. Godet, T. Zorba, K. M. Paraskevopoulos, D. Ballutaud, Electron cyclotron resonance deposition, structure, and properties of oxygen incorporated hydrogenated diamond like amorphous carbon films, J. Appl. Phys. 96 (2004) 5456-5461.
[14] Y. Wu, J. Chen, H. Li, L. Ji, Y. Ye, H. Zhou, Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering, Appl. Surf. Sci. 284 (2013) 165–170.
[15] D. Bootkul, B. Supsermpol, N. Saenphinit, C. Aramwit, S. Intarasiri, Nitrogen doping for adhesion improvement of DLC film deposited on Si substrate by Filtered Cathodic Vacuum Arc (FCVA) technique, Appl. Surf. Sci. 310 (2014) 284-292.
[16] H. Li, M. Fang, Y. Hou, R. Tang, Y. Yang, C. Zhong, Q. Li, Z. Li, The different effect of the additional electron withdrawing cyano group in different conjugation bridge: the adjusted molecular energy levels and largely improved photovoltaic performance, ACS Appl. Mater. Interfaces. 8 (2016) 12134-12140.
[17] V. Kopustinskas, Š. Meškinis, V. Grigaliūnas, S. Tamulevičius, M. Pucėta, G. Niaura, R. Tomašiūnas, Ion beam synthesis of α-CNx: H films, Surf. Coat. Technol. 180 (2002) 151-152.
[18] M. Tsuchiya, K. Murakami, K. Magara, K. Nakamura, H. Ohashi, K. Tokuda, T. Takami, H. Ogasawara, Y. Enta, Y. Suzuki, and S. Ando, Structural and electrical properties and current–voltage characteristics of nitrogen-doped diamond-like carbon films on Si substrates by plasma-enhanced chemical vapor deposition, Jpn. J. Appl. Phys. 55 (2016) 065502.
[19] L. Cançado, A. Jorio, M. Pimenta, Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size, Phys. Rev. B. 76 (2007) 064304-064307.
[20] J. K. Shin, C. S. Lee, K. R. Lee, K. Y. Eun, Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films, Appl. Phys. Lett. 78 (2001) 631-633.
[21] P. K. Chu, L. Li Characterization of amorphous and nanocrystalline carbon films, Mater. Chem. Phys. 96 (2006) 253-277.
[22] M. Kahn, M. Čekada, T. Schöberl, R. Berghauser, C. Mitterer, C. Bauer, W. Waldhauser, E. Brandstätter, Structural and mechanical properties of diamond-like carbon films deposited by an anode 6 layer source, Thin Solid Films. 517 (2009) 6502-6507.
[23] C. Casiraghi, A. Ferrari, J. Robertson, Raman spectroscopy of hydrogenated amorphous carbons, Phys. Rev. B. 72 (2005) 085401.
[24] G. Adamopoulos, C. Godet, T. Zorba, K. M. Paraskevopoulos, D. Ballutaud Electron cyclotron resonance deposition, structure, and properties of oxygen incorporated hydrogenated diamond like amorphous carbon films, J. Appl. Phys. 96 (2004) 5456–5461.
[25] N. Dwivedi, S. Kumar, H. K. Malik, Role of ex-situ oxygen plasma treatments on the mechanical and optical properties of diamond-like carbon thin films, Mater. Chem. Phys. 134 (2012) 7-12.
[26] T. McKindra, M. J. O'Keefe, R. Cortez, Reactive sputter-deposition of oxygenated amorphous carbon thin films in Ar/O2, Diam. Relat. Mater. 20 (2011) 509-515.
[27] M. Chhowalla, A. Ferrari, J. Robertson, G. Amaratunga, Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy, Appl. Phys. Lett. 76, (2000) 1419-1421.
[28] A. C. Ferrari and J. Robertson, Phys. Rev. B. 61, (2000) 14095.
[29] S. R. Polaki, K. Ganesan, S. K. Srivastava, M. Kamruddin, A. K. Tyagi, The role of substrate bias and nitrogen doping on the structural evolution and local elastic modulus of diamond-like carbon films, J. Phys. D. Appl. Phys. 50 (2017) 175601.
[30] M. K. Puchert, P. Y. Timbrell, R. N. Lamb, D. R. McKenzie, Thickness‐dependent stress in sputtered carbon films, J. Vac. Sci. Technol. 12 (1994) 727-732.
[31] J. W. Zou, K. Reichelt, K. Schmidt, B. Dischler, The deposition and study of hard carbon films, J. Appl. Phys. 65 (1989) 3914-3918.
[32] R. Zarei Moghadam, M. H. Ehsani, H. Rezagholipour Dizaji, P. Kameli, and M. Jannesari, Oxygen doping effect on wettability of diamond-like carbon films, Mater. Res. Exp. 8 (2021) 035601.
[33] M. A. Tamor, W. C. Vassell, Raman “fingerprinting” of amorphous carbon films, J. Appl. Phys. 76 (1994) 3823-3830.
[34] M. A. Tamor, W. C. Vassell, K. R. Carduner, Atomic constraint in hydrogenated “diamond-like” carbon, Appl. Phys. Lett. 58 (1991) 592-594.
[35] J. Robertson, E. P. O'Reilly, Electronic and atomic structure of amorphous carbon, Phys. Rev. B. 35 (1987) 2946.
[36] S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, B. Rafferty, L. M. Brown, J. Schwan, D. F. Franceschini, G. Mariotto. Nitrogen modification of hydrogenated amorphous carbon films, J. Appl. Phys. 81 (1997) 2626-2634.
[37] Y. B. Zhang, S. P. Lau, D. Sheeja, and B. K. Tay, Study of mechanical properties and stress of tetrahedral amorphous carbon films prepared by pulse biasing, Surf. Coat. Technol. 195 (2005) 338-343.
[38] Y. N. Kok, P. E. Hovsepian, Q. Luo, D. B. Lewis, J. G. Wen, I. Petrov, Influence of the bias voltage on the structure and the tribological performance of nanoscale multilayer C/Cr PVD coatings, Thin Solid Films 475 (2005) 219-226.
[39] T. Chen, X. Wu, Z. Ge, J. Ruan, B. Lv, and J. Zhang, Achieving low friction and wear under various humidity conditions by co-doping nitrogen and silicon into diamond-like carbon films, Thin Solid Films. 638 (2017) 375-382.
[40] D.-J. Jan, C.-F. Ai, C.-C. Lee, Deposition of nitrogen-containing diamond-like carbon films on acrylic substrates by an ion beam process, Vacuum. 74 (2004) 531-538.
[41] R. Zarei Moghadam, H. Rezagholipour Dizaji, M. H. Ehsani, Modification of optical and mechanical properties of nitrogen doped diamond-like carbon layers, J. Mater. Sci.: Mater. 30 (2019) 1-12.
[42] E. Mohagheghpour, M. Rajabi, R. Gholamipour, M. M. Larijani, S. Sheibani, Correlation study of structural, optical and electrical properties of amorphous carbon thin films prepared by ion beam sputtering deposition technique, Appl. Surf. Sci. 360 (2016) 52-58.
[43] C. Chung, S. Chen, P. Chiu, M. Chang, T. Hung, T. Ko, Carbon film-coated 304 stainless steel as PEMFC bipolar plate, J. Power Sources. 176 (2008) 276–281.
[44] M. Chhowalla, A. C. Ferrari, J. Robertson, G. A. J. Amaratunga, Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy, Appl. Phys. Lett. 76 (2000) 1419–1421.
[45] R. Zarei Moghadam, H. Rezagholipour Dizaji, M. H. Ehsani, P. Kameli, and M. Jannesari. Correlation study of structural, optical, and hydrophobicity properties of diamond-like carbon films prepared by an anode layer source. Mater Res Exp 6 (2019) 055601.
[46] T.F. Zhang, K.W. Kim, K.H. Kim, Nitrogen-incorporated hydrogenated amorphous carbon film electrodes on Ti substrates by hybrid deposition technique and annealing, J. Electrochem. Soc. 163 (2016) 54–61.
[47] E. A. Vogler Structure and reactivity of water at biomaterial surfaces, Adv. Colloid Interface. 74 (1998) 69–117.
[48] L. Y. Ostrovskaya, Studies of diamond and diamond-like film surfaces using XAES, AFM and wetting Vacuum. 68 (2002) 219–238.
[49] E. Gribanova, A. Zhukov, I. Antonyuk, C. Benndorf, E. Baskova, Effect of the acidity of aqueous solutions on the wettability of diamond, graphite and pyrocarbon surfaces, Diamond Relat. Mater. 9 (2000) 1–6.
[50] F. Piazza, G. Morell Wettability of hydrogenated tetrahedral amorphous carbon, Diamond Relat. Mater. 18 (2009) 43–50.