Improving performance and stability of silver bismuth iodide solar cells using carbon nanotubes in the hole transport layer

Document Type : Original Article


1 Damghan University

2 School of Physics, Damghan University, Damghan, Iran


Silver bismuth iodide (SBI) materials are low-toxic, air-stable, and suitable for replacing lead-based perovskite ones. In this work, the photovoltaic characteristics of SBI-based solar cells with different hole transport layers (HTL) were investigated. Results showed that the power conversion energy (PCE) of Silver bismuth iodide-based solar cells with P3HT as HTL was higher than spiro-OMeTAD. Also, the influence of CNT as a dopant on the performance and stability of the devices was studied. CNT doping of silver bismuth iodide increased the Voc and so the efficiency of the solar cell was enhanced. Furthermore, Also, CNT-doped P3HT improves the interface contact between the active layer and HTL and increases the conductivity of HTL. The best PCE of about 2.16% for devices with FTO/c-TiO2/m-TiO2/silver bismuth iodide-CNT/P3HT-CNT/Au structure was obtained. Moreover, the stability of solar cells under environmental conditions after 30 days was investigated. All devices preserved about 95% of their efficiency.


Main Subjects

© 2022 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (

[1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light
sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), (2009) 6050.
[2] W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, and S.I. Seok, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), (2017) 1376.
[3] S.Z. Haider, H. Anwar, and M. Wang, Theoretical Device Engineering for High-Performance Perovskite Solar Cells Using CuSCN as Hole Transport Material Boost the Efficiency Above 25%. Phys. Status Solidi A 216(11), (2019) 1900102.
[4] C.F.J. Lau, Z. Wang, N. Sakai, J. Zheng, C.H. Liao, M. Green, S. Huang, H. J. Snaith, and A. Ho-Baillie, Fabrication of efficient and stable CsPbI3 perovskite solar cells through cation exchange process. Adv. Energy Mater. 9(36), (2019) 1901685.
[5] S. Ito, G. Mizuta, S. Kanaya, H. Kanda, T. Nishina, S. Nakashima, H. Fujisawa, M. Shimizu, Y. Haruyama, and H. Nishino, Light stability tests of CH 3 NH 3 PbI 3 perovskite solar cells using porous carbon counter electrodes. Phys. Chem. Chem. Phys. 18(39), (2016) 27102.
[6] A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15(3), (2016) 247.
[7] S.F. Hoefler, G. Trimmel, and T. Rath, Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatsh. Chem. 148(5), (2017) 795.
[8] C. Zhang, L. Gao, S. Hayase, and T. Ma, Current advancements in material research and techniques focusing on lead-free perovskite solar cells. Chem. Lett. 46(9), (2017) 1276.
[9] Y Y. Kim, Z. Yang, A. Jain, O. Voznyy, G.H. Kim, M. Liu, L. N. Quan, F.P. García de Arquer, R. Comin, J.Z. Fan, and E.H. Sargent, Pure Cubic-Phase Hybrid Iodobismuthates AgBi2I7 for Thin-Film Photovoltaics. Angew. Chem. 128(33), (2016) 9738.
[10] H. Zhu, D. Mingao Pan, M.B. Johansson, and E.M. Johansson, High Photon-to-Current Conversion in Solar Cells Based on Light-Absorbing Silver Bismuth Iodide. ChemSusChem 10(12), (2017) 2592.
[11] I. Turkevych, S. Kazaoui, E. Ito, T. Urano, K. Yamada, H. Tomiyasu, H. Yamagishi, M. Kondo, S. Aramaki, Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites. ChemSusChem 10(19), (2017) 3754.
[12] K.W. Jung, M.R. Sohn, H.M. Lee, I.S. Yang, S. Do Sung, J. Kim, E.W-G Diau, and W.I. Lee, Silver bismuth iodides in various compositions as potential Pb-free light absorbers for hybrid solar cells. Sustainable Energy & Fuels 2(1), (2018) 294.
[13] Z. Shao, T. Le Mercier, M.B. Madec, and T. Pauporté, Exploring AgBixI3x+ 1 semiconductor thin films for lead-free perovskite solar cells. Mater. Des. 141, 81 (2018).
[14] Z. Shao, T. Le Mercier, M.B. Madec, and T. Pauporté, AgBi2I7 layers with controlled surface morphology for solar cells with improved charge collection. Mater. Lett. 221, (2018) 135.
[15] B. Ghosh, B. Wu, X. Guo, P.C. Harikesh, R.A. John, T. Baikie, Arramel, A.T. S. Wee, C. Guet, T. C. Sum, S. Mhaisalkar, and N. Mathews, Superior Performance of Silver Bismuth Iodide Photovoltaics Fabricated via Dynamic Hot-Casting Method under Ambient Conditions. Adv. Energy Mater. 8(33), (2018) 1802051.
[16] N. Pai, J. Lu, T.R. Gengenbach, A. Seeber, A.S. Chesman, L. Jiang, D.C. Senevirathna, P.C. Andrews, U. Bach, Y.B. Cheng, and A.N. Simonov, Silver bismuth sulfoiodide solar cells: tuning optoelectronic properties by sulfide modification for enhanced photovoltaic performance. Adv. Energy Mater. 9(5), (2019) 1803396.
[17] M. Khazaee, K. Sardashti, C.C. Chung, J.P. Sun, H. Zhou, E. Bergmann, W.A. Dunlap-Shohl, Q. Han, I.G. Hill, J.L. Jones, D.C. Lupascu, and D.B. Mitzi, Dual-source evaporation of silver bismuth iodide films for planar junction solar cells. J. Mater. Chem. A 7(5), (2019) 2095.
[18] S.S. Hosseini, and M. Adelifard, The Effect of Multi-walled Carbon Nanotubes and Reduced Graphene Oxide Doping on the Optical and Photovoltaic Performance of Ag 2 BiI 5-Based Solar Cells. J. Electron. Mater. 49(10), (2020) 5790.
[19] H. Zhu, J. Wei, K. Wang, and D. Wu, Applications of carbon materials in photovoltaic solar cells. Sol. Energy Mater. Sol. Cells 93(9), (2009) 1461.
[20] S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, and H.J. Snaith, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14(10), (2014) 5561.
[21] Z. Wei, H. Chen, K. Yan, X. Zheng, and S. Yang, Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J. Mater. Chem. A 3(48), (2015) 24226.
[22] K. Aitola, K. Sveinbjörnsson, J.P. Correa-Baena, A. Kaskela, A. Abate, Y. Tian, E.M.J. Johansson, M. Grätzel, E.I. Kauppinen, A. Hagfeldt, and G. Boschloo, Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy Environ. Sci. 9(2), (2016) 461.
[23] K. Aitola, K. Domanski, J.P. Correa-Baena, K. Sveinbjörnsson, M. Saliba, A. Abate, M. Grätzel, E. Kauppinen, E.M.J. Johansson, W. Tress, A. Hagfeldt, and G. Boschloo, High temperature-stable perovskite solar cell based on low-cost carbon nanotube hole contact. Adv. Mater. 29(17), (2017) 1606398.
[24] Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang, and H. Lin, Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. J. Mater. Chem. A 3(31), (2015) 15996.
[25] A.L. Palma, L. Cinà, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, and A. Di Carlo, Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy 22, (2016) 349.
[26] M.M. Tavakoli, R. Tavakoli, Z. Nourbakhsh, A. Waleed, U.S. Virk, and Z. Fan, High efficiency and stable perovskite solar cell using ZnO/rGO QDs as an electron transfer layer. Adv. Mater. Interfaces 3(11), (2016) 1500790.
[27] S.S. Mali, C.S. Shim, H. Kim, and C.K. Hong, Reduced graphene oxide (rGO) grafted zinc stannate (Zn 2 SnO 4) nanofiber scaffolds for highly efficient mixed-halide perovskite solar cells. J. Mater. Chem. A 4(31), (2016) 12158.
[28] E. Nouri, M.R. Mohammadi, Z.X. Xu, V. Dracopoulos, and P. Lianos, Improvement of the photovoltaic parameters of
perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter. Phys. Chem. Chem. Phys. 20(4), (2018) 2388.