[1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light
sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), (2009) 6050.
[2] W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, and S.I. Seok, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), (2017) 1376.
[3] S.Z. Haider, H. Anwar, and M. Wang, Theoretical Device Engineering for High-Performance Perovskite Solar Cells Using CuSCN as Hole Transport Material Boost the Efficiency Above 25%. Phys. Status Solidi A 216(11), (2019) 1900102.
[4] C.F.J. Lau, Z. Wang, N. Sakai, J. Zheng, C.H. Liao, M. Green, S. Huang, H. J. Snaith, and A. Ho-Baillie, Fabrication of efficient and stable CsPbI3 perovskite solar cells through cation exchange process. Adv. Energy Mater. 9(36), (2019) 1901685.
[5] S. Ito, G. Mizuta, S. Kanaya, H. Kanda, T. Nishina, S. Nakashima, H. Fujisawa, M. Shimizu, Y. Haruyama, and H. Nishino, Light stability tests of CH 3 NH 3 PbI 3 perovskite solar cells using porous carbon counter electrodes. Phys. Chem. Chem. Phys. 18(39), (2016) 27102.
[6] A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15(3), (2016) 247.
[7] S.F. Hoefler, G. Trimmel, and T. Rath, Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatsh. Chem. 148(5), (2017) 795.
[8] C. Zhang, L. Gao, S. Hayase, and T. Ma, Current advancements in material research and techniques focusing on lead-free perovskite solar cells. Chem. Lett. 46(9), (2017) 1276.
[9] Y Y. Kim, Z. Yang, A. Jain, O. Voznyy, G.H. Kim, M. Liu, L. N. Quan, F.P. García de Arquer, R. Comin, J.Z. Fan, and E.H. Sargent, Pure Cubic-Phase Hybrid Iodobismuthates AgBi2I7 for Thin-Film Photovoltaics. Angew. Chem. 128(33), (2016) 9738.
[10] H. Zhu, D. Mingao Pan, M.B. Johansson, and E.M. Johansson, High Photon-to-Current Conversion in Solar Cells Based on Light-Absorbing Silver Bismuth Iodide. ChemSusChem 10(12), (2017) 2592.
[11] I. Turkevych, S. Kazaoui, E. Ito, T. Urano, K. Yamada, H. Tomiyasu, H. Yamagishi, M. Kondo, S. Aramaki, Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites. ChemSusChem 10(19), (2017) 3754.
[12] K.W. Jung, M.R. Sohn, H.M. Lee, I.S. Yang, S. Do Sung, J. Kim, E.W-G Diau, and W.I. Lee, Silver bismuth iodides in various compositions as potential Pb-free light absorbers for hybrid solar cells. Sustainable Energy & Fuels 2(1), (2018) 294.
[13] Z. Shao, T. Le Mercier, M.B. Madec, and T. Pauporté, Exploring AgBixI3x+ 1 semiconductor thin films for lead-free perovskite solar cells. Mater. Des. 141, 81 (2018).
[14] Z. Shao, T. Le Mercier, M.B. Madec, and T. Pauporté, AgBi2I7 layers with controlled surface morphology for solar cells with improved charge collection. Mater. Lett. 221, (2018) 135.
[15] B. Ghosh, B. Wu, X. Guo, P.C. Harikesh, R.A. John, T. Baikie, Arramel, A.T. S. Wee, C. Guet, T. C. Sum, S. Mhaisalkar, and N. Mathews, Superior Performance of Silver Bismuth Iodide Photovoltaics Fabricated via Dynamic Hot-Casting Method under Ambient Conditions. Adv. Energy Mater. 8(33), (2018) 1802051.
[16] N. Pai, J. Lu, T.R. Gengenbach, A. Seeber, A.S. Chesman, L. Jiang, D.C. Senevirathna, P.C. Andrews, U. Bach, Y.B. Cheng, and A.N. Simonov, Silver bismuth sulfoiodide solar cells: tuning optoelectronic properties by sulfide modification for enhanced photovoltaic performance. Adv. Energy Mater. 9(5), (2019) 1803396.
[17] M. Khazaee, K. Sardashti, C.C. Chung, J.P. Sun, H. Zhou, E. Bergmann, W.A. Dunlap-Shohl, Q. Han, I.G. Hill, J.L. Jones, D.C. Lupascu, and D.B. Mitzi, Dual-source evaporation of silver bismuth iodide films for planar junction solar cells. J. Mater. Chem. A 7(5), (2019) 2095.
[18] S.S. Hosseini, and M. Adelifard, The Effect of Multi-walled Carbon Nanotubes and Reduced Graphene Oxide Doping on the Optical and Photovoltaic Performance of Ag 2 BiI 5-Based Solar Cells. J. Electron. Mater. 49(10), (2020) 5790.
[19] H. Zhu, J. Wei, K. Wang, and D. Wu, Applications of carbon materials in photovoltaic solar cells. Sol. Energy Mater. Sol. Cells 93(9), (2009) 1461.
[20] S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, and H.J. Snaith, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14(10), (2014) 5561.
[21] Z. Wei, H. Chen, K. Yan, X. Zheng, and S. Yang, Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J. Mater. Chem. A 3(48), (2015) 24226.
[22] K. Aitola, K. Sveinbjörnsson, J.P. Correa-Baena, A. Kaskela, A. Abate, Y. Tian, E.M.J. Johansson, M. Grätzel, E.I. Kauppinen, A. Hagfeldt, and G. Boschloo, Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy Environ. Sci. 9(2), (2016) 461.
[23] K. Aitola, K. Domanski, J.P. Correa-Baena, K. Sveinbjörnsson, M. Saliba, A. Abate, M. Grätzel, E. Kauppinen, E.M.J. Johansson, W. Tress, A. Hagfeldt, and G. Boschloo, High temperature-stable perovskite solar cell based on low-cost carbon nanotube hole contact. Adv. Mater. 29(17), (2017) 1606398.
[24] Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang, and H. Lin, Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. J. Mater. Chem. A 3(31), (2015) 15996.
[25] A.L. Palma, L. Cinà, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, and A. Di Carlo, Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy 22, (2016) 349.
[26] M.M. Tavakoli, R. Tavakoli, Z. Nourbakhsh, A. Waleed, U.S. Virk, and Z. Fan, High efficiency and stable perovskite solar cell using ZnO/rGO QDs as an electron transfer layer. Adv. Mater. Interfaces 3(11), (2016) 1500790.
[27] S.S. Mali, C.S. Shim, H. Kim, and C.K. Hong, Reduced graphene oxide (rGO) grafted zinc stannate (Zn 2 SnO 4) nanofiber scaffolds for highly efficient mixed-halide perovskite solar cells. J. Mater. Chem. A 4(31), (2016) 12158.
[28] E. Nouri, M.R. Mohammadi, Z.X. Xu, V. Dracopoulos, and P. Lianos, Improvement of the photovoltaic parameters of
perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter. Phys. Chem. Chem. Phys. 20(4), (2018) 2388.