Photocatalytic activity of the La.7Ca0.3MnO3 nanorods

Document Type : Original Article


1 Department of Chemistry, Semnan University, Semnan, 35195-363, Iran

2 Department of Physics, Semnan University, Semnan, 35195-363, Iran


La0.7Ca0.3MnO3 (LCMO) powder was synthesized via the hydrothermal method. Structural, morphological, and optical properties of the as-prepared sample were systematically characterized. The XRD results proved the existence of only one crystalline phase. The FESEM image indicates that the La0.7Ca0.3MnO3 sample has a nanorod structure with an average diameter of approximately 125 nm. According to UV-Vis analysis, the band gap energy of the sample was estimated about 2.13 eV. The adsorption and photocatalytic performances of LCMO nanostructure were systematically characterized. The photoactivity efficiency for decolorizing Rhodamine B solution (10 ppm), by LCMO (0.5 g/L), with nearly 80 min illumination, was more than 90% with a reaction rate constant of 0.029 min−1. Ultimately, the reusability of the photocatalyst for degrading the RhB dye was investigated using six cycles. The good reusability and stability of LCMO implies a potential application for dealing with high-concentration dyes by adsorption–photocatalytic degradation.


Main Subjects

© 2022 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (

[1] H. Jie, M. Jie, M. Jiahua, H. Huang, "Preparation of
LaMnO3/graphene thin films and their photocatalytic
activity." Journal of Rare Earths 32 (2014) 1126-
[2] N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, P.Vaziri, "Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles." International journal of molecular sciences 13 (2012) 12242-12258.
[3] S.A.B. Asif, S.B. Khan, A.M. Asiri, "Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants." Nanoscale research letters 9 (2014) 1-9.
[4] M. Humayun, N. Sun, F. Raziq, X. Zhang, R. Yan, Z. Li, Y. Qu, L. Jing, "Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons." Applied Catalysis B: Environmental 231 (2018) 23-33.
[5] S. Zou, Z. Fu, C. Xiang, W. Wu, S. Tang, Y. Liu, D. Yin, "Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability." Chinese Journal of Catalysis 36 (2015) 1077-1085.
[6] D. Rajamanickam, M. Shanthi, "Photocatalytic degradation of an azo dye Sunset Yellow under UV-A light using TiO2/CAC composite catalysts." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128 (2014) 100-108.
[7] R.J. Tayade, T.S. Natarajan, H.C. Bajaj, "Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes." Industrial & Engineering Chemistry Research 48 (2009) 10262-10267.
[8] W.K. Jo, "Photocatalytic oxidation of low-level airborne 2-propanol and trichloroethylene over titania irradiated with bulb-type light-emitting diodes." Materials 6 (2013) 265-278.
[9] I.K. Konstantinou, T.A. Albanis, "TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review." Applied Catalysis B: Environmental 49 (2004) 1-14.
[10] Q.I. Rahman, M. Ahmad, S.K. Misra, M. Lohani, "Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles." Materials Letters 91 (2013) 170-174.
[11] M. Wei, J. Wan, Z. Hu, Z. Peng, B. Wang, H. Wang, "Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe (III) porphyrin-sensitized TiO2 nanotube photocatalyst." Applied Surface Science 391 (2017) 267-274.
[12] M.R. Eskandarian, M. Fazli, N.M. Rasoulifard, H. Choi, "Decomposition of organic chemicals by zeolite-TiO2 nanocomposite supported onto low density polyethylene film under UV-LED powered by solar radiation." Applied Catalysis B: Environmental 183 (2016) 407-416.
[13] M.R. Eskandarian, H. Choi, M. Fazli, "Rasoulifard, M.H. "Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water." Chemical Engineering Journal 300 (2016) 414-422.
[14] M. Shaterian, M. Enhessari, D. Rabbani, M. Asghari, M. Salavati-Niasari, "Synthesis, characterization and photocatalytic activity of LaMnO3 nanoparticles." Applied surface science 318 (2014) 213-217.
[15] M. Maleki, M. Haghighi, "Sono-dispersion of CuS-CdS over TiO2 in one-pot hydrothermal reactor as visible-light-driven nanostructured photocatalyst." Journal of Molecular Catalysis 424 (2016) 283-296.
[16] G.R. Andrade, C.C. Nascimento, E.C. Neves, C.D.A.E. Santo Barbosa, L.P. Costa, L.S. Barreto, I.F. Gimenez, "One-step preparation of CdS nanocrystals supported on thiolated silica-gel matrix and evaluation of photocatalytic performance." Journal of hazardous materials 203 (2012) 151-157.
[17] D. Das, N. Biswal, S. Martha, K. Parida, "Solar-light induced photodegradation of organic pollutants over CdS-pillared zirconium–titanium phosphate (ZTP)." Journal of Molecular Catalysis A: Chemical 349 (2011) 36-41.
[18] A. Arabi, M. Fazli, M. Ehsani, "Tuning the morphology and photocatalytic activity of La0.7Ca0.3MnO3 nanorods via different mineralizer-assisted hydrothermal syntheses." Materials Research Bulletin 90 (2017) 205-211.
[19] Y. Li, X. He, M. Cao, "Micro-emulsion-assisted synthesis of ZnS nanospheres and their photocatalytic activity." Materials Research Bulletin 43 (2008) 3100-3110.
[20] S. Fu, H. Niu, Z. Tao, J. Song, C. Mao, S. Zhang, C. Chen, D. Wang, "Low temperature synthesis and photocatalytic property of perovskite-type LaCoO3 hollow spheres." Journal of Alloys and Compounds 576 (2013) 5-12.
[21] H. Yang, J. Zhang, G. Lin, T. Xian, J. Jiang, "Preparation, characterization and photocatalytic properties of terbium orthoferrite nanopowder." Advanced Powder Technology 24 (2013) 242-245.
[22]L. Xiong, W. Sun, Y. Yang, C. Chen, J. Ni, "Heterogeneous photocatalysis of methylene blue over titanate nanotubes: Effect of adsorption." Journal of colloid and interface science 356 (2011) 211-216.
[23] D. Dinda, A. Gupta, S.K. Saha, "Removal of toxic Cr (VI) by UV-active functionalized graphene oxide for water purification." Journal of Materials Chemistry A 1 (2013) 11221-11228.
[24] K. Kusakabe, M. Ezaki, A. Sakoguchi, K. Oda, N. Ikeda, "Photocatalytic behaviors of silica-loaded mesoporous titania." Chemical Engineering Journal 180 (2012) 245-249.
[25] F. Chen, Z. Liu, Y. Liu, P. Fang, Y. Dai, "Enhanced adsorption and photocatalytic degradation of high-concentration methylene blue on Ag2O-modified TiO2-based nanosheet." Chemical engineering journal 221 (2013) 283-291.
[26] S. Xu, J. Ng, X. Zhang, H. Bai, D.D. Sun, "Adsorption and photocatalytic degradation of Acid Orange 7 over hydrothermally synthesized mesoporous TiO2 nanotube." Colloids and surfaces A: physicochemical and engineering aspects 379 (2011) 169-175.
[27] H.A. Le, S. Chin, J. Jurng, "Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon." Powder Technology 225 (2012) 167-175.
[28] D. Xu, Z.H. Huang, F. Kang, M. Inagaki, T.H. Ko, "Effect of heat treatment on adsorption performance and photocatalytic activity of TiO2-mounted activated carbon cloths." Catalysis Today 139(2008) 64-68.
[29] M. Su, C. He, L. Zhu, Z. Sun, C. Shan, Q. Zhang, D. Shu, R. Qiu, Y. Xiong, "Enhanced adsorption and photocatalytic activity of BiOI–MWCNT composites towards organic pollutants in aqueous solution." Journal of hazardous materials 229 (2012)72-82.
[30] M. Bradha, T. Vijayaraghavan, S. Suriyaraj, R. Selvakumar, A.M. Ashok, "Synthesis of photocatalytic La(1–x)AxTiO3.5–δ (A= Ba, Sr, Ca) nano perovskites and their application for photocatalytic oxidation of congo red dye in aqueous solution." Journal of Rare Earths 33 (2015) 160-167.
[31] C. Zener, "Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure." Physical Review 82 (1951) 403.
[32] A. Millis, B.I. Shraiman, R. Mueller, "Dynamic Jahn-Teller effect and colossal magnetoresistance in La1−xSrxMnO3." Physical review letters 77 (1996) 175.
[33] M. Culebras, R. Torán, C.M. Gómez, A. Cantarero, "La1−xCaxMnO3 semiconducting nanostructures: morphology and thermoelectric properties." Nanoscale Research Letters 9 (2014 )1-5.
[34] P. Phong, D. Manh, L. Hoan, T. Ngai, N. Phuc, I.J. Lee, "Particle size effects on La0.7Ca0.3MnO3: Griffiths phase-like behavior and magnetocaloric study." Journal of Alloys and Compounds 662 (2016) 557-565.
[35] T.M. Tank, A. Bodhaye, Y.M. Mukovskii, S.P. Sanyal, "Crystallographic direction dependence of electrical-transport, magneto-transport, magnetic and thermal properties of La0.7Ca0.3MnO3 single crystal." Materials Research Bulletin 83 (2016) 250-258.
[36] E. Korovin, D. Selishchev, A. Besov, D. Kozlov, "UV-LED TiO2 photocatalytic oxidation of acetone vapor: Effect of high frequency controlled periodic illumination." Applied Catalysis B: Environmental 163 (2015) 143-149.
[37] S. Daengsakul, C. Thomas, C. Mongkolkachit, S. Maensiri, "Synthesis and Structural Characterization of the La0.7A0.3MnO3 (A= Sr, Ca, Ba and Na) Nanocrystalline Powders Prepared by a Simple Thermal Decomposition Route." Journal of superconductivity and novel magnetism 25 (2012), 2507-2518.
[38] W. Wenwei, C. Jinchao, W. Xuehang, L. Sen, W. Kaituo, T. Lin, "Nanocrystalline LaMnO3 preparation and kinetics of crystallization process." Advanced Powder Technology 24 (2013) 154-159.
[39] R. Chihoub, A. Amira, N. Mahamdioua, S. Altintas, A. Varilci, C. Terzioglu, "Magnetoresistive properties of cerium doped La0.7Ca0.3MnO3 manganites." Physica B: Condensed Matter 492 (2016) 11-15.
[40] B. Nagabhushana, R.S. Chakradhar, K. Ramesh, C. Shivakumara, G. Chandrappa, "Combustion synthesis, characterization and metal–insulator transition studies of nanocrystalline La1−xCaxMnO3 (0.0≤ x≤ 0.5)." Materials chemistry and physics 102 (2007) 47-52.
[41] G.C. Lavorato, E. Lima Jr, D. Tobia, D. Fiorani, H.E. Troiani, R.D. Zysler, E.L. Winkler, "Size effects in bimagnetic CoO/CoFe2O4 core/shell nanoparticles." Nanotechnology 25 (2014) 355704.
[42] M. Anwar, F. Ahmed, B.H. Koo, "Influence of Ce addition on the structural, magnetic, and magnetocaloric properties in La0.7−xCexSr0.3MnO3 (0≤ x≤ 0.3) ceramic compound." Ceramics International 41 (2015) 5821-5829.
[43] S.G. Choi, H.S. Lee, H. Choi, S.W. Chung, H.H. Park, "The effect of Sr concentration on resistive switching properties of La1−xSrxMnO3 films." Thin Solid Films 529 (2013) 352-355.
[44] M. Cesaria, A. Caricato, G. Leggieri, M. Martino, G. Maruccio, "Optical response of oxygen deficient La0. 7Sr0. 3MnO3 thin films deposited by pulsed laser deposition." Thin Solid Films 545 (2013) 592-600.
[45] S.Pazouki, N.Memarian, "Effects of Hydrothermal temperature on the physical properties and anomalous band gap behavior of ultrafine SnO2 nanoparticles." Optik 246 (2021) 167843.
[46] X. Lin, F. Huang, W. Wang, Z. Shan, J. Shi, "Methyl orange degradation over a novel Bi-based photocatalyst Bi3SbO7: Correlation of crystal structure to photocatalytic activity." Dyes and Pigments 78 (2008) 39-47.
[47] H. He, J. Huang, L. Cao, J. Wu, "Photodegradation of methyl orange aqueous on MnWO4 powder under different light resources and initial pH." Desalination 252 (2010) 66-70.
[48] R. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, "Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles." Optik 127 (2016) 7143-7154.
[49] M. Rashad, A. Ibrahim, D.Rayan, M.Sanad, I. Helmy, "Photo-Fenton-like degradation of Rhodamine B dye from waste water using iron molybdate catalyst under visible light irradiation." Environmental nanotechnology, monitoring & management 8 (2017) 175-186.
[50] M. Ghiasi, A. Malekzadeh, "Solar photocatalytic degradation of methyl orange over La0.7Sr0.3MnO3 nano-perovskite." Separation and Purification Technology 134 (2014) 12-19.
[51] B.C. Ma, S. Ghasimi, K. Landfester, F. Vilela, Zhang, K.A. "Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications." Journal of Materials Chemistry A 3 (2015) 16064-16071.
[52] S. Wang, B. Yang, Y. Liu, "Synthesis of a hierarchical SnS2 nanostructure for efficient adsorption of Rhodamine B dye." Journal of colloid and interface science 507 (2017) 225-233.