Effect of Cation and anion migration toward contacts on Perovskite solar cell performance

Document Type : Original Article


Department of Physics, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran


Despite the rapid and promising progress on the perovskite solar cell efficiency of around 25.7 % in the last few years, the ion migration as an intrinsic instability has limited the practical application of these solar cells. In this work, we have modified the common drift-diffusion equations to model the experimental current-voltage (J-V) hysteresis in Perovskite solar cells. In our model, both anions and cations have been considered. Inverted hysteresis behavior in J-V characteristics and contact corrosion in perovskite solar cells have yet to be explained clearly. To address this issue, we modified ionic-electronic transport equations by adding ionic flux equations to let ions move from the perovskite layer toward contacts. Our results show a strong inverted hysteresis because of the high flux rate of anions and cations to ETL and HTL and, consequently, toward contacts. Although the ionic flux may cause the instability of the perovskite solar cells, the efficiency is increased for the cases where anions and cations flux to HTL and ETL toward contacts. In all ionic flux models, open circuit voltages (Voc) are increased due to ionic accumulation at interfaces, the built-higher gradient of electric potentials at interfaces, and the modified Fermi level (modified work function-aging process).


Main Subjects

© 2022 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] J. Werner, C.C. Boyd, M.D. McGehee. "Perovskiteā€Based
Multijunction Solar Cells." Perovskite Photovoltaics and
Optoelectronics: From Fundamentals to Advanced
Applications (2022) 433–453.
[2] N. Nikfar, N. Memarian. "Theoretical study on the effect of
electron transport layer parameters on the functionality of
double-cation perovskite solar cells." Optik 258 (2022)
[3] J. Zeng, Y. Qi, Y. Liu, D. Chen, Z. Ye, Y. Jin. "ZnO-Based
Electron-Transporting Layers for Perovskite Light-
Emitting Diodes: Controlling the Interfacial Reactions."
The Journal of Physical Chemistry Letters 13 (2022) 694–
[4] Y.T. Li, L. Han, H. Liu, K. Sun, D. Luo, X.L. Guo, D.L. Yu, T.L.
Ren. "Review on Organic–Inorganic Two-Dimensional
Perovskite-Based Optoelectronic Devices." ACS Applied Electronic Materials 4 (2022) 547-567.
[5] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells." Journal of the american chemical society 131 (2009) 6050–6051.
[6] https://www.nrel.gov/pv/cell-efficiency.html, (2022).
[7] T. Bu, J. Li, F. Zheng, W. Chen, X. Wen, Z. Ku, Y. Peng, J. Zhong, Y.-B. Cheng, F. Huang. "Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module." Nature communications 9 (2018) 1–10.
[8] J. Wei, Q. Wang, J. Huo, F. Gao, Z. Gan, Q. Zhao, H. Li. "Mechanisms and suppression of photoinduced degradation in perovskite solar cells." Advanced Energy Materials 11 (2021) 2002326.
[9] O. Almora, P. Lopez-Varo, K.T. Cho, S. Aghazada, W. Meng, Y. Hou, C. Echeverría-Arrondo, I. Zimmermann, G.J. Matt, J.A. Jiménez-Tejada. "Ionic dipolar switching hinders charge collection in perovskite solar cells with normal and inverted hysteresis." Solar Energy Materials and Solar Cells 195 (2019) 291–298.
[10] A. Singh, W. Kaiser, A. Gagliardi. "Role of cation-mediated recombination in perovskite solar cells." Solar Energy Materials and Solar Cells 221 (2021) 110912.
[11] G.A. Nemnes, C. Besleaga, V. Stancu, D.E. Dogaru, L.N. Leonat, L. Pintilie, K. Torfason, M. Ilkov, A. Manolescu, I. Pintilie. "Normal and inverted hysteresis in perovskite solar cells." The Journal of Physical Chemistry C. 121 (2017) 11207–11214.
[12] M. Minbashi, E. Yazdani. "Comprehensive study of anomalous hysteresis behavior in perovskite-based solar cells." Scientific Reports 12 (2022) 1–14.
[13] H. Li, R. Yang, C. Wang, Y. Wang, H. Chen, H. Zheng, D. Liu, T. Zhang, F. Wang, P. Gu. "Corrosive Behavior of Silver Electrode in Inverted Perovskite Solar Cells Based on Cu: NiO x." IEEE Journal of Photovoltaics 9 (2019) 1081–1085.
[14] X. Li, S. Fu, W. Zhang, S. Ke, W. Song, J. Fang. "Chemical anti-corrosion strategy for stable inverted perovskite solar cells." Science advances 6 (2020) eabd1580.
[15] https://freefem.org/, (n.d.).
[16] M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet. "Modeling thin-film PV devices." Progress in Photovoltaics: Research and Applications 12 (2004) 143–153.
[17] M. Burgelman, J. Verschraegen, B. Minnaert, J. Marlein. "Numerical simulation of thin film solar cells: practical exercises with SCAPS." Proceedings of NUMOS. University of Gent. (2007) 357–366.
[18] Y. Kawano, J. Chantana, T. Minemoto. "Impact of growth temperature on the properties of SnS film prepared by thermal evaporation and its photovoltaic performance." Current Applied Physics 15 (2015) 897–901.
[19] A. Ghobadi, M. Yousefi, M. Minbashi, A.H.A. Kordbacheh, A.R.H. Abdolvahab, N.E. Gorji. "Simulating the effect of adding BSF layers on Cu2BaSnSSe3 thin film solar cells." Optical Materials 107 (2020) 109927.
[20] S.J. Fonash. "Chapter Two - Material Properties and Device Physics Basic to Photovoltaics, in: S.J.B.T.-S.C.D.P. (Second E. Fonash (Ed.)." Academic Press, Boston (2010) 9–65.
[21] M. Burgelman. "Mott-Schottky analysis from C-V simulations, and Admittance Analysis from C-f simulations in SCAPS." in: Dept. of Electronics and Information Technology (ELIS) University of Gent ‘Belgium’ (2017) 2–4.
[22] Y. Park, S. Lee, J. Yi, B.-D. Choi, D. Kim, J. Lee. "Sputtered CdTe thin film solar cells with Cu2Te/Au back contact." Thin Solid Films 546 (2013) 337–341.
[23] S.M. Sze, K.K. Ng. "Physics of semiconductor devices, John wiley & sons." (2006).
[24] M. Minbashi, A. Ghobadi, M.H. Ehsani, H. Rezagholipour Dizaji, N. Memarian. "Simulation of high efficiency SnS-based solar cells with SCAPS." Solar Energy 176 (2018) 520–525.
[25] M. Minbashi, M.K. Omrani, N. Memarian, D.H. Kim. "Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell." Current Applied Physics 17 (2017) 1238–1243.
[26] M. Minbashi, E. Yazdani. "Comprehensive study of anomalous hysteresis behavior in perovskite-based solar cells." Scientific Reports 12 (2022) 1–14.
[27] C. Multiphysics. "Comsol Multiphysics." Reference Manual: Version 5.6 (2014).
[28] F. Wu, R. Pathak, K. Chen, G. Wang, B. Bahrami, W.H. Zhang, Q. Qiao. "Inverted current–voltage hysteresis in perovskite solar cells." ACS Energy Letters 3 (2018) 2457–2460.
[29] W. Li, M.U. Rothmann, Y. Zhu, W. Chen, C. Yang, Y. Yuan, Y.Y. Choo, X. Wen, Y.-B. Cheng, U. Bach. "The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells." Nature Energy 6 (2021) 624–632.
[30] F. Wu, R. Pathak, K. Chen, G. Wang, B. Bahrami, W.H. Zhang, Q. Qiao. "Inverted current–voltage hysteresis in perovskite solar cells." ACS Energy Letters 3 (2018) 2457–2460.