Zn-MOF electrode material for supercapacitor applications

Document Type : Original Article

Authors

1 Nuclear Fuel Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran

2 Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

A Zn-based metal–organic framework (Zn-MOF) was synthesized by a novel electrodeposition method. The prepared Zn-MOF was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy techniques. The supercapacitive behavior of synthesized MOF was examined using cyclic voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscopy (EIS) measurements in 3 M KOH. SEM images confirmed that Zn-MOF is composed of layered cuboid structure properly attached on to nickel foam substrate. Electrochemical behaviors of the Zn-MOF/Ni foam were also evaluated through GCD tests, which showed high specific capacitance of 288 F g–1 at the current density of 2 A g–1. The outcomes showed great potential of fabricated Zn-MOF as a high-performance electrode material for electrochemical supercapacitors.

Keywords

Main Subjects


[1] S. Hussain, A.J. Khan, M. Arshad, M.S. Javed, A. Ahmad, S.S. Ahmad Shah, M.R. Khan, S. Akram, S. Ali, Z.A. ALOthman, G. Liu, "Charge storage in binder-free 2D-hexagonal CoMoO4 nanosheets as a redox active material for pseudocapacitors." Ceramics International 47 (2021), 8659–8667.
[2] B. Asbani, G. Buvat, J. Freixas, M. Huvé, D. Troadec, P. Roussel, T. Brousse, C. Lethien, "Ultra-high areal capacitance and high rate capability RuO2 thin film electrodes for 3D micro-supercapacitors." Energy Storage Materials 42 (2021) 259–267.
[3] Y. Peng, J. Xu, J. Ma, Y. Bai, S. Cao, S. Zhang, H. Pang, "Metal-organic framework (MOF) composites as promising materials for energy storage applications." Advances in Colloid and Interface Science 307 (2022) 102732.
[4] S. Kavian, S. Hajati, M. Moradi, "High-rate supercapacitor based on NiCo-MOF-derived porous NiCoP for efficient energy storage." Journal of Materials Science: Materials in Electronics 32 (2021) 13117–13128.
[5] T. H. Nguyen, H. Fei, I. Sapurina, F.A. Ngwabebhoh, C. Bubulinca, L. Munster, E. D. Bergerová, A. Lengalova, A. H. Jiang, T.T. Dao, N. Bugarova, "Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors." Electrochimica Acta 367 (2021) 137563.
[6] H. Bigdeli, M. Moradi, S. Hajati, M. A. Kiani, J. Toth, "Cobalt terephthalate MOF-templated synthesis of porous nano-crystalline Co3O4 by the new indirect solid state thermolysis as cathode material of asymmetric supercapacitor." Physica E: Low-Dimensional Systems and Nanostructures 94 (2017) 158–166.
[7] M. Jayachandran, T. Maiyalagan, T. Vijayakumar, B. Gunasekaran, "Metal-organic framework (MOF-5) incorporated on NiCo2O4 as electrode material for supercapacitor application." Materials Letters 302 (2021) 130338.
[8] B. Abdollahi, S. Farshnama, E. Abbasi Asl, A. Najafidoust, M. Sarani, "Cu(BDC) metal–organic framework (MOF)-based Ag2CrO4 heterostructure with enhanced solar-light degradation of organic dyes." Inorganic Chemistry Communications 138 (2022) 109236.
[9] M. V. Varsha, G. Nageswaran, "Direct Electrochemical Synthesis of Metal Organic Frameworks." Journal of The Electrochemical Society 167 (2020) 155527.
[10] A. Ghoorchian, A. Afkhami, T. Madrakian, M. Ahmadi, "Electrochemical synthesis of MOFs." Metal-Organic Frameworks for Biomedical Applications (2020). 177–195.
[11] M. Aghazadeh, I. Karimzadeh, M. R. Ganjali, "Preparation of Nano-sized Bismuth-Doped Fe3O4 as an Excellent Magnetic Material for Supercapacitor Electrodes." Journal of Electronic Materials 47 (2018) 3026–3036.
[12] M. Yang, Q. Bai, "Flower-like hierarchical Ni-Zn MOF microspheres: Efficient adsorbents for dye removal." Colloids and Surfaces A: Physicochemical and Engineering Aspects 582(2019) 123795.
[13] J. Yang, , P. Xiong, C. Zheng, H. Qiu, M. Wei, "Metal-organic frameworks: A new promising class of materials for a high performance supercapacitor electrode." Journal of Materials Chemistry A 2(2014) 16640–16644.
[14] F. Cao, M. Gan, , L. Ma, , X. Li, , F. Yan, M. Ye, Y. Zhai, Y. Zhou, "Hierarchical sheet-like Ni–Co layered double hydroxide derived from a MOF template for high-performance supercapacitors." Synthetic Metals 234(2017) 154–160.
[15] G. J. H. Lim, X. Liu, C. Guan, J. Wang, "Co/Zn bimetallic oxides derived from metal organic frameworks for high performance electrochemical energy storage." Electrochimica Acta 291(2018) 177–187.
[16] Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang, G. "Chen, Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors." Journal of Materials Chemistry A 5 (2017) 1094–1102.
[17] H. Liang, R. Liu, C. Hu, X. An, X. Zhang, H. Liu, J. Qu, "Synergistic effect of dual sites on bimetal-organic frameworks for highly efficient peroxide activation." Journal of Hazardous Materials 406 (2021) 124692.
[18] Q. Zha, F.Yuan, G.Qin, Y. Ni, "Cobalt-Based MOF-on-MOF Two-Dimensional Heterojunction Nanostructures for Enhanced Oxygen Evolution Reaction Electrocatalytic Activity." Inorganic Chemistry 59(2020) 1295–1305.
[19] Y. Li, M. Xie, X. Zhang, Q. Liu, D. Lin, C. Xu, F. Xie, X. Sun, "Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection." Sensors and Actuators B: Chemical 278(2019) 126–132.
[20] M.S. Rahmanifar, H. Hesari, A. Noori, M.Y. Masoomi, A. Morsali, M.F. Mousavi, "A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material." Electrochimica Acta, 275 (2018) 76–86.
[21] X. Li, J. Li, Y. Zhang, P. Zhao, "Synthesis of Ni-MOF derived NiO/rGO composites as novel electrode materials for high performance supercapacitors." Colloids and Surfaces A: Physicochemical and Engineering Aspects 622(2021) 126653.
[22] R. Srinivasan, E. Elaiyappillai, E.J. Nixon, I. Sharmila Lydia, P.M. Johnson, "Enhanced electrochemical behaviour of Co-MOF/PANI composite electrode for supercapacitors." Inorganica Chimica Acta 502 (2020) 119393.
[23] H. Yu, H. Xia, J. Zhang, J.He, S. Guo, Q. Xu, "Fabrication of Fe-doped Co-MOF with mesoporous structure for the optimization of supercapacitor performances." Chinese Chemical Letters 29 (2018) 834–836.
[24] D.Y. Lee, S.J. Yoon, N.K. Shrestha, S.H. Lee, H. Ahn, S.H. Han, "Unusual energy storage and charge retention in Co-based metal-organic-frameworks." Microporous and Mesoporous Materials 153(2012) 163–165.
[25] S. Umezawa, T. Douura, K. Yoshikawa, D. Tanaka, V. Stolojan, S.R.P. Silva, M. Yoneda, K. Gotoh, Y. Hayashi, "Zinc-Based Metal–Organic Frameworks for High-Performance Supercapacitor Electrodes: Mechanism Underlying Pore Generation." Energy and Environmental Materials (2022).
[26] H. He, G. Wang, B. Shen, Y. Wang, Z. Lu, S. Guo, J. Zhang, L. Yang, Q. Jiang, Z. Xiao, "Three isostructural Zn/Ni nitro-containing metal-organic frameworks for supercapacitor." Journal of Solid State Chemistry 288 (2020) 121375.
[27] B.Y. Chang, S.M. Park, "Electrochemical impedance spectroscopy. "Annual Review of Analytical Chemistry, 3(2010) 207–229.
[28] N.O. Laschuk, E. Bradley Easton, O.V. Zenkina, "Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry" RSC advances 11 (2012) 27925-36.
[29] P. Vadhva, J. Hu, M.J. Johnson, R. Stocker, M. Braglia, D.J.L. Brett, A.J.E. Rettie, "Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook." In ChemElectroChem 8 (2021) 1930–1947.
[30] S. Salehi, M.H. Ehsani, M. Aghazadeh, A. Badiei, M.R. Ganjali, "Electrodeposition of binderless Ni,Zn-MOF on porous nickel substrate for high-efficiency supercapacitors." Journal of Solid State Chemistry 316(2022) 123549.
[31] M.R. Pallavolu, A.N. Banerjee, R.R. Nallapureddy, S.W. Joo, "Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor." Journal of Materials Science and Technology 96(2022) 332–344.