[1] Y. Momose, I. Nomura, Evaluation of the Conduction Band Discontinuity of MgSe/ZnCdSe Heterojunctions on InP Substrates Using n–i–n Diodes, J. Electron. Mater. 47 (2018) 4515-4518.
[2] X. Xie, B. Li, Z. Zhang, S. Wang, D. Shen, Conduction band discontinuity and carrier multiplication at the MgxZn1−xO/MgyZn1−yO interface, RSC. Advances. 6 (2016) 34955-34958.
[3] P. Baraskar, A. Agrawal, R.J. Choudhary, P. Sen, Band offset studies in Cr2O3/Ti0.02Cr1.98O3 bilayer film using photoelectron spectroscopy, Phys. B: Condens. Matter. 599 (2020) 412590.
[4] K. Kusakabe, D. Imai, K. Wang, A. Yoshikawa, InN/GaN short-period superlattices as ordered InGaN ternary alloys, Phys. Status Solidi C. 13 (2016) 205-208.
[5] M. Jiang, H. Xiao, S. Peng, L. Qiao, G. Yang, Z. Liu, X. Zu, First-Principles Study of Point Defects in GaAs/AlAs Superlattice: the Phase Stability and the Effects on the Band Structure and Carrier Mobility, Nanoscale Res. Lett. 13 (2018) 301.
[6] N. Andrushchak, Investigation of Negative Differential Resistance Phenomena in Quantum Well Heterostructures, University of Arkansas, Theses and Dissertations 2012.
[7] B. Barkissy, A. Nafidi, A. Boutramine, N. Benchtaber, A. Khalal, T. Gouti, Electronic transport and band structures of GaAs/AlAs nanostructures superlattices for near-infrared detection, Appl. Phys. A. 123 (2016) 26.
[8] D. Dey, D. De, First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes, Int. J. Nano Dimens. 9 (2018) 134-144.
[9] G.B. Bachelet, D.R. Hamann, M. Schluter, Pseudopotentials that work: From H to Pu, Phys. Rev. B. 26 (1982) 4199-4228.
[10] R. M. Martin. Electronic Structure Basic Theory and Practical Methods (First Ed. Part II), Cambridge University Press, 2004.
[11] C.G. Van de-Walle, Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B. 39 (1989) 1871-1883.
[12] J.M. Bass, M. Oloumi, C.C. Matthai, A method for determining band offsets in semiconductor superlattices and interfaces, J. Condens. Matter Phys. 1 (1989) 10625.
[13] M.K. Hudait, M. Clavel, P.S. Goley, Y. Xie, J.J. Heremans, Y. Jiang, Z. Jiang, D. Smirnov, G.D. Sanders, C.J. Stanton, Structural, morphological and magnetotransport properties of composite semiconducting and semimetallic InAs/GaSb superlattice structure, Mater. Adv. 1(2020) 1099-1112.
[14] I. Lapushkin, A. Zakharova, S. T. Yen, K.A. Chao, A self-consistent investigation of the semimetal–semiconductor transition in InAs/GaSb quantum wells under external electric fields, J. Condens. Matter Phys. 16 (2004) 4677.
[15] J. Tersoff, Theory of semiconductor heterojunctions: The role of quantum dipoles, Phys. Rev. B. 30 (1984) 4874-4877.
[16] W. A. Harrison, Elementary theory of heterojunctions, J. Vac. Sci. Technol. 14 (1977) 1016-1021.
[17] C.J. Van de-Walle, R.M. Martin, Theoretical study of band offsets at semiconductor interfaces, Phys. Rev. B. 35 (1987) 8154-8165.
[18] J. Batey, S.L. Wright, Energy band alignment in GaAs:(Al,Ga)As heterostructures: The dependence on alloy composition, J. Appl. Phys. 59 (1986) 200-209.
[19] P. Perfetti, F. Patella, F. Sette, C. Capasso, A. Savoia, G. Margaritonda, Experimental study of the GaP-Si interface, Phys. Rev. B. 30 (1984) 4533-4539.
[20] N. E. Christensen, Possibility of heterostructure band offsets as bulk properties: transitivity rule and orientation effects, Phys. Rev. B. 38 (1988) 12687-12690.