[1] J.B. Thomson, A.R. Armstrong, P.G. Bruce, A New Class of Pyrochlore Solid Solution Formed by Chemical Intercalation of Oxygen, J. Solid State Chem. 148 (1999) 56-62.
[2] H. Kishimoto, T. Omata, S. Otsuka-Yao-Matsuo, K. Ueda, Crystal structure of metastable κ-CeZrO4 phase possessing an ordered arrangement of Ce and Zr ions, J. Alloys and Comp. 312 (2000) 94-103.
[3] D.J. Haynes, D.A. Berry, D. Shekhawat, J. J. Spivey, Catalytic partial oxidation of a diesel surrogate fuel using an Ru-substituted pyrochlore, Catal. Today. 136 (2008) 206-213.
[4] R. Kieffer, M. Fujiwara, L. Udron, Y. Souma, Hydrogenation of CO and CO2 toward methanol, alcohols and hydrocarbons on promoted copper-rare earth oxides catalysts, Catal. Today. 36 (1997)15-24.
[5] K. Matsuhira, M. Wakeshima, Y. Hinatsu, S. Takagi, Metal–Insulator Transitions in Pyrochlore Oxides Ln2Ir2O7, J. Phys. Soc. Jap. 80 (2011) 094701.
[6] M.G. Brik, A.M. Srivastava, N.M. Avram, Comparativ analysis of crystal field effect and optical spectroscopy of six-coordinated Mn4+ ion in the Y2T2O7 and Y2Sn2O7 pyrochlores, Optical Mater., 33 (2011) 1671-1676.
[7] K.A. Ross, L.R. Yaraskavitch, M. Laver, J.S. Gardner, J.A. Quilliam, S. Meng, J.B. Kycia, D.K. Singh, T. Proffen, H.A. Dabkowska, B.D. Gaulin, Dimensional evolution of spin correlations in the magnetic pyrochlore Yb2Ti2O7, Physical Review B., 84 (2011) 174442.
[8] J.K. Gill, O.P. Pandey, K. Singh, Ionic conductivity, structural and thermal properties of pure and Sr2+ doped Y2Ti2O7 pyrochlores for SOFC. Solid State Sci., 13 (2011) 1960-1966.
[9] P. Biginelli, Ueber Aldehyduramide des Acetessigäthers, Ber. Dtsch. Chem. Ges., 24 (1891)1317-1319.
[10] K. Singh, D. Arora, S., Singh, Genesis of Dihydropyrimidinoneψ Calcium Channel Blockers: Recent Progress in Structure-Activity Relationships and Other Effects, Mini Rev. Med. Chem., 9 (2009) 95-106.
[11] K. Kouachi, G. Lafaye, S. Pronier, L. Bennini, S. Menad Mo/γ-Al2O3 catalysts for the Biginelli reaction. Effect of Mo loading, J. Mol. Catal. A: Chem., 395 (2014) 210-216.
[12] F. Tamaddon, S. Moradi, Controllable selectivity in Biginelli and Hantzsch reactions using nano ZnO as a structure base catalyst, J. Mol. Catal. A: Chem., 370 (2013) 117-122.
[13] S. Samantaray, B.G. Mishra, Combustion synthesis, characterization and catalytic application of MoO3–ZrO2 nanocomposite oxide towards one pot synthesis of octahydroquinazolinones, J. Mol. Catal. A: Chem., 339 (2011) 92-98.
[14] J. Safari, S.G. Ravandi, MnO2–MWCNT nanocomposites as efficient catalyst in the synthesis of Biginelli-type compounds under microwave radiation, J. Mol Catal. A: Chem., 373 (2013) 72-77.
[15] H.R. Memarain, M. Ranjbar, Substituent effect in photocatalytic oxidation of 2-oxo-1,2,3,4-tetrahydropyrimidines using TiO2 nanoparticles, J. Mol. Catal. A: Chem., 356 (2012) 46-52.
[16] J. Lal, M. Sharma, S. Gupta, P. Parashar, P. Sahu Agarwal D.D., Hydrotalcite: A novel and reusable solid catalyst for one-pot synthesis of 3, 4-dihydropyrimidinones and mechanistic study under solvent free conditions, J. Mol. Catal. A: Chem., 352 (2012) 31-37.
[17] S. Khademinia, M. Behzad, H.S. Jahromi, Solid state synthesis, characterization, optica properties and cooperative catalytic performance of bismuth vanadate nanocatalyst for Biginelli reactions, RSC Adv., 5 (2015) 24313.
[18] Box GEP, Draper NR Empirical Model-Building and Response Surfaces, Wiley, New York, 1987.
[19] S. Masaya, S. Masaki, Y. Ito, An Enantioselective Two-Component Catalyst System: Rh−Pd-Catalyzed Allylic Alkylation of Activated Nitriles, J. Amer. Chem. Soc. 118 (1996) 3309-3310.
[20] Y.F. Cai, H.M. Yang, L. Li, K.Z. Jiang, G.Q. Lai, J.X. Jiang, L.W. Xu Cooperative and Enantioselective NbCl5/Primary Amine Catalyzed Biginelli Reaction, Eur. J. Org. Chem. (2010) 4986-4990.