[1] N. Senthilkumar, P.K. Sharma, N. Sood, and N. Bhalla, "Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body," Coordination Chemistry Reviews, 445 (2021) 214082.
[2] J. Moradi, M. Ghazi, M. Ehsani, and P. Kameli, "Structural and magnetic characterization of La0. 8Sr0. 2MnO3 nanoparticles prepared via a facile microwave-assisted method," Journal of Solid State Chemistry, 215 (2014) 1-7.
[3] M. H. Ehsani, P. Kameli, M. E. Ghazi, and F. S. Razavi, "An investigation on magnetic interacting La0. 6Sr0. 4MnO3 nanoparticles," in Advanced Materials Research, 829 (2014) 712-716.
[4] S. Mahmoudi and A. Gholizadeh, "Effect of non-magnetic ions substitution on the structure and magnetic properties of Y3− xSrxFe5− xZrxO12 nanoparticles," Journal of Magnetism and Magnetic Materials, 456 (2018) 46-55.
[5] A. Gholizadeh, "The effects of A/B-site substitution on structural, redox and catalytic properties of lanthanum ferrite nanoparticles," Journal of Materials Research and Technology, 8 (2019) 457-466.
[6] J. Carvalheiras, R. M. Novais, F. Mohseni, J. S. Amaral, M. P. Seabra, J. A. Labrincha, and R. C. Pullar, "Synthesis of red mud derived M-type barium hexaferrites with tuneable coercivity," Ceramics International, 46 (2020) 5757-5764.
[7] J.M. Silveyra, E. Ferrara, D.L. Huber, and T.C. Monson, "Soft magnetic materials for a sustainable and electrified world," Science, 362 (2018) eaao0195.
[8] T. Raoufi and F. Shokrian, "Study of Landau theory and universal curve on La0. 6-xGdxSr0. 4MnO3 (x= 0-0.1) manganite," Progress in Physics of Applied Materials, 1 (2021) 39-43.
[9] N.K. Gill, R. Puri, "Mössbauer study of Li0. 5Fe2. 5-x CrxO4 ferrites," Spectrochimica Acta Part A: Molecular Spectroscopy, 41(1985) 1005-1008.
[10] M. Choupani and A. Gholizadeh, "The effect of calcination temperature on the X-ray peak broadening of t-CuFe2O4," Progress in Physics of Applied Materials, 1 ( 2021) 19-24.
[11] M. Aparna, A.N. Grace, P. Sathyanarayanan, and N. K. Sahu, "A comparative study on the supercapacitive behaviour of solvothermally prepared metal ferrite (MFe2O4, M= Fe, Co, Ni, Mn, Cu, Zn) nanoassemblies," Journal of Alloys and Compounds, 745 (2018) 385-395.
[12] X. Xie, B. Wang, Y. Wang, C. Ni, X. Sun, and W. Du, "Spinel structured MFe2O4 (M= Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review," Chemical Engineering Journal, 428 (2022) 131160.
[13] Y. Ren, L. Lin, J. Ma, J. Yang, J. Feng, and Z. Fan, "Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M= Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water," Applied Catalysis B: Environmental, 165 (2015) 572-578.
[14] H. Ghorbani, M. Eshraghi, A.A. Sabouri, "Magnetic properties of Co0. 9Cd0. 1Fe1. 9X0. 1O4 (X= Cr, Yb) nanoparticles prepared by hydrothermal method," Progress in Physics of Applied Materials, 1 (2021) 50-56.
[15] A. Miri, M. Sarani, A. Najafidoust, M. Mehrabani, F. A. Zadeh, and R. S. Varma, "Photocatalytic performance and cytotoxic activity of green-synthesized cobalt ferrite nanoparticles," Materials Research Bulletin, 149 (2022) 111706.
[16] M. Ehsani, S. Esmaeili, M. Aghazadeh, P. Kameli, F. S. Tehrani, and I. Karimzadeh, "An investigation on the impact of Al doping on the structural and magnetic properties of Fe3O4 nanoparticles," Applied Physics A, 125 (2019) 1-9.
[17] T. Dippong, E.A. Levei, I.G. Deac, I. Petean, and O. Cadar, "Dependence of Structural, Morphological and Magnetic Properties of Manganese Ferrite on Ni-Mn Substitution,"
International Journal of Molecular Sciences, 23 (2022) 3097.
[18] P. Tancredi, P.C. Rivas-Rojas, O. Moscoso-Londoño, D. Muraca, M. Knobel, and L. M. Socolovsky, "Size and doping effects on the improvement of the low-temperature magnetic properties of magnetically aligned cobalt ferrite nanoparticles," Journal of Alloys and Compounds, 894 (2022) 162432.
[19] S. Y. Mulushoa, N. Murali, P. Taddesse, A. Ramakrishna, D. Parajuli, K. M. Batoo, R. Verma, R. Kumar, Y. S. Rao, and S. Hussain, "Structural, dielectric and magnetic properties of Nickel-Chromium substituted Magnesium ferrites, Mg1–xNixFe2-xCrxO4 (0≤ x≤ 0.7)," Inorganic Chemistry Communications, 138 (2022) 109289.
[20] S. R. Kumar, G. V. Priya, B. Aruna, M. Raju, D. Parajuli, N. Murali, R. Verma, K. M. Batoo, R. Kumar, and P. L. Narayana, "Influence of Nd3+ substituted Co0. 5Ni0. 5Fe2O4 ferrite on structural, morphological, dc electrical resistivity and magnetic properties," Inorganic Chemistry Communications, 136 (2022) 109132.
[21] A. Gholizadeh, "A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods," Journal of the american ceramic society, 100 (2017) 3577-3588.
[22] W. Mohamed, N. Hadia, M. Alzaid, and A. M. Abu-Dief, "Impact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1-xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approach," Solid State Sciences, 125 (2022) 106841.
[23] P. da Silva-Soares, L. da Costa-Catique, F. Guerrero, P. Mariño-Castellanos, E. Govea-Alcaide, Y. Romaguera-Barcelay, A. Rodrigues, E. Padrón-Hernández, and R. Peña-Garcia, "Investigation of structural and magnetic properties of Al substituted Ba0. 9La0. 1Fe12-xAlxO19 hexaferrites prepared by solid-state reaction method," Journal of Magnetism and Magnetic Materials, 547 (2022) 168958.
[24] B. Aslibeiki, P. Kameli, M. Ehsani, H. Salamati, G. Muscas, E. Agostinelli, V. Foglietti, S. Casciardi, and D. Peddis, "Solvothermal synthesis of MnFe2O4 nanoparticles: the role of polymer coating on morphology and magnetic properties," Journal of Magnetism and Magnetic Materials, 399 (2016) 236-244.
[25] http://abulafia.mt.ic.ac.uk/shannon/ptable.php.
[26] B. Aslibeiki, P. Kameli, and M. Ehsani, "MnFe2O4 bulk, nanoparticles and film: A comparative study of structural and magnetic properties," Ceramics International, 42 (2016) 12789-12795.