[1] S. Iijima, Helical microtubules of graphitic carbon,
Nature, 354 (1991) 56-58.
[2] S. Iijima , T. Ichihashi, Single-shell carbon nanotubes of
1-nm diameter, Nature, 363 (1993) 603–605.
[3] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R.
Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth
of carbon nanotubes with single-atomic-layer walls,
Nature, 363 (1993) 605–607.
[4] M. S. Dresselhaus, G. Dresselhaus, P. Avouris, Editors.
Carbon Nanotubes: Synthesis, Structure Properties
and Applications. First Ed. Berlin, Germany: SpringerVerlag; (2001).
[5] A. Kumar, K. Sharma, A. R. Dixit, A review of the
mechanical and thermal properties of graphene and its
hybrid polymer nanocomposites for structural
applications, Springer: J Mater Sci, 55 (2019) 2682–
2724.
[6] V.N. Popov, Carbon nanotubes: properties and
application ,Elsevier; Mater Sci Eng R, 43 (2004) 61–
102.
[7] SH-Y. Yue, T. Ouyang, M. Hu, Diameter Dependence of
Lattice Thermal Conductivity of Single-Walled Carbon
Nanotubes: Study from Ab Initio,Nature; Scientific
Reports, 5,(2015) 15440.
[8] B. Kumanek, D. Janas, Thermal conductivity of carbon
nanotube networks: a review, Springer: J. Mater Sci, 54
(2019) 7397–7427.
[9] M. Jafari, M. Vaezzadeh, M. Mansouri, A. Hajnorouzi,
Investigation of thermal conductivity of single-wall
carbon nanotubes, Thermal Science, 15, 2, (2011)565-
570.
[10] P. R. Bandaru, Electrical Properties and Applications of
Carbon Nanotube Structures, ASP; Journal of
Nanoscience and Nanotechnology, 7 (2007) 1–29.
[11] K. Saeed, I. Khan, Carbon nanotubes-properties and
applications: a review, Carbon Letters, 14 (2013) 131-
144.
[12] M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, E.
Hernandez, Electronic, thermal and mechanical
properties of carbon nanotubes, Phil. Trans. R. Soc.
Lond. A, 362 (2004) 2065-2098.
[13] A. Abdulhameed, I.A. Halin, M.N. Mohtar, M.N.
Hamidon, Optimization of Surfactant Concentration in
Carbon Nanotube Solutions for Dielectrophoretic
Ceiling Assembly and Alignment: Implications for
Transparent Electronics. ACS omega, 7 (2022) 3680-
3688.
[14] P. Avouris, Carbon Nanotube Electronics, Elsevier;
Chemical Physics, 281 (2002) 429-445.
[15] T. W. Odom, J-L Huang, P. Kim, C. M. Lieber, Atomic
structure and electronic properties of single-walled
carbon nanotubes, Nature, 391 (1998) 62-64.
[16] M. Jafari, L. Bohloli Oskoei, Dependence of Specific Heat
on the Chirality and Diameter of Single-Walled Carbon
Nanotubes, Iran J Sci Technol Trans Sci 41(2017) 557–
562.
[17] M. Mansouri, H. Rezagholipour Dizaji, M. R. Saeidi, A.
Mirzaheydari, Majid V aezzadeh, Interplay Between
Competition Pinch Effect and Repulsion Force in
Carbon Nanotubes, International Journal of
Nanoscience, WSPC/175-IJN, (2022) 2250005 (8
pages).
[18] M. Mansouri, M. Vaezzadeh, H. Rezagholipour Dizaji, ,
M. R. Saeidi, Effect of chirality surfaces overlap on
individual carbon nanotubes resistivity. Applied
Physics A, 128 (2022) 1-9.
[19] S. Fujita, A. Suzuki, Electrical Conduction in Graphene
and Nanotubes. First Ed. Weinheim, Germany: WileyVCH; (2013).
[20] H. Qiu, J. Yang, Structure and Properties of Carbon
Nanotubes. In: H. Peng, Q. Li, T. Chen, Editors.
Industrial Applications of Carbon Nanotubes, 1st Ed.
Shanghai: Elsevier; (2017) 47- 69.
[21] J. Doh, S-I Park, Q. Yang, N. Raghavan, The effect of
carbon nanotube chirality on the electrical
conductivity of polymer nanocomposites considering
tunneling resistance, IOP Nanotechnology, 30 (2019)
465701.
[22] A. Maffucci, S. A. Maksimenko, G. Miano, G. Y. Slepyan,
Springer, Electrical Conductivity of Carbon Nanotubes:
Modeling and Characterization, Materials Science,
978 (2017) 101-128.
[23] J. Guang, W. Haifang, Y. Lei, W. Xiang, P. Rongjuan ,Y.
Tao, Z. Yuliang, G. Xinbiao, Cytotoxicity of carbon
nanomaterials: single-wall nanotube, multi-wall
nanotube, and fullerene, Sci. Technol., 39 (2005) 1378-
1383.
[24] K.-T. Lau, D. Hui, The revolutionary creation of new
advanced materials—carbon nanotube composites,
Elsevier Composites: part B, 33 (2002) 263-277.
[25] G. Cao, Nanostructures and Nanomaterials: Synthesis,
Properties and Applications, Journal of the American
Chemical Society, 126 (2004) 14679-14679.
[26] A. Aqel, K.M.M. Abou, El-Nour, R. A.A. Ammar, A. AlWarthan, Carbon nanotubes, science and technology
part (I) structure, synthesis and characterisation,
Arabian Journal of Chemistry, 5 (2012) 1–23.
[27] S. Arai, T. Osaki, M. Hirota, M. Uejima, Fabrication of
copper/single-walled carbon nanotube composite
film with homogeneously dispersed nanotubes by
electroless deposition, Elsevier; Materials Today
Communications,7 (2016) 101-107.
[28] M. Meyyappan, Carbon Nanotubes Science &
Applications, 1st Edition, CRC Press, (2005).
[29] S. Jalili , M. Jafari, J. Habibian, Effect of Impurity on
Electronic Properties of Carbon Nanotubes, J. Iran.
Chem. Soc., 5, 4 (2008) pp. 641-645.
[30] J-C. Charlier, X. Blasé, S. Roche, Electronic and transport
properties of nanotubes, Rev. Mod. Phys., 79 (2007)
677-732.
[31] A. K. Jagadeesan, K. Thangavelu, V. Dhananjeyan,
Carbon Nanotubes: Synthesis, Properties and
Applications, 21st Ed, London, Intech Open (2020).
[32] L. Langer, L. Stockman, J. P. Heremans, V. Bayot, C.H.
Olk, C. V.Haesendonck, Y. Bruynseraede, J-P. Issi,
Electrical resistance of a carbon nanotube bundle, J.
Mater. Res, 9 (1994) 927-932.
[33] S. Frank, P. Poncharal, Z. L. Wang, Walt A. de Heer,
Carbon Nanotube Quantum Resistors, Science, 280
(1998) 1744-1746.
[34] S. Sanvito, Y-K. Kwon, D. Tománek, C J. Lambert,
Fractional Quantum Conductance in Carbon
Nanotubes, Phys Rev Lett, 84 (2000) 1974-1977.
[35] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C.
Xu, Y. Hee Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E.
Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley,
Crystalline Ropes of Metallic Carbon Nanotubes,
Science, 273 (1996) 483-487.
[36] P. G. Collins, M. S. Arnold, P. Avouris, Engineering
carbon nanotubes and nanotube circuits using
electrical breakdown, Science, 292 (2001)706-709.
[37] H. Dai, E.W. Wong, C.M. Lieber, Probing Electrical
Transport in Nanomaterials: Conductivity of
Individual Carbon Nanotubes, Science, 272 (1996)
523-526.
[38] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H. F.
Ghaemi, T.Thio, Electrical conductivity of individual
carbon nanotubes, Nature, 382 (1996) 54-56.
[39] Z. Zhen, H. Zhu, Structure and Properties of Graphene,
1st Ed., Elsevier, Academic Press, (2018) 1-26.
[40] L. Barletti, Springer open, Hydrodynamic equations for
an electron gas in graphene, J. Math. Phys., 6 (2016) 1-
17.
[41] J.S Bunch. Mechanical and Electrical Properties of
Graphene Sheets, [Ph.D. dissertation]. Ithaca, New
York: USA. Cornell; (2008).
[42] M. S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of
carbon nanotubes, Elsevier; Carbon, 33 (1995) 883-
891.
[43] P. A. Gowri Sankar, K.U. kumar, Mechanical and
Electrical Properties of Single Walled Carbon
Nanotubes: A Computational Study, European Journal
of Scientific Research, 60 (2011) 342-358.
[44] R. Saito, M. Fujita, G. Dresselhaus, M. S Dresselhaus,
Electronic structure of chiral graphene tubules, Appl.
Phys. Lett. 60 (1992) 2204-2206.
[45] G. Dresselhaus, M.S. Dresselhaus, R. Saito, Physical
Properties Of Carbon Nanotubes,1st Ed, London:
Imperial college perss, (1998) 35-53.
[46] M.S. Purewal, Electron Transport in Single-Walled
Carbon Nanotubes, 1st Ed. New York: Engineering and
Applied Science, (2008).
[47] David Halliday, Robert Resnick, Jearl Walker,
Fundamentals of Physics Extended, 10 set Ed., Wiley,
Chapter 26, (2013).
[48] M.R. Ward, Electrical Engineering Science, Published
by McGraw-Hill Book Co, New York, (1971) 36–40.
[49] CRC Handbook of Chemistry and Physics, 65th Edition,
CRC Press, Inc., Boca Raton, FL, pp. F-114 - F-120,
(1984-85).
[50] C. L. Kane, E. J. Mele, R. S. Lee, J. E. Fischer, P. Petit, H.
Dai, A. Thess, R. E. Smalley, A.R. M. Verschueren, S. J.
Tans, C. Dekker, Temperature-dependent resistivity of
single-wall carbon nanotubes, Europhys. Lett, 4 6
(1998) 683-688.
[51] J. E. Fischer, H. Dai, A. Thess, R. Lee, N. M. Hanjani, D. L.
Dehaas R. E. Smalley, Metallic resistivity in crystalline
ropes of single-wall carbon nanotubes, Physical
Review B, 8 (1997) 55.
[52] G-M. Zhao, Is Room Temperature Superconductivity in
Carbon Nanotubes Too Wonderful to Believe?, arXiv:
cond-mat, [cond-mat. supr-con], (2003) 0307770v3.
[53] R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, R. E. Smalley,
Conductivity enhancement in single-walled carbon
nanotube bundles doped with K and Br, Nature 388
(1997) 255.