Electron Gas Hardness of Individual Carbon Nanotubes

Document Type : Original Article

Authors

1 Faculty of Physics, Semnan University, Semnan, Iran

2 Faculty of Physics, Khatam Al-Anbia (PBU) University, P.O. Box: 178181-3513, Tehran, Iran

3 Department of Physics, Shahed University, Box: 18651-33191, Tehran, Iran.

4 Faculty of Physics, Khaje Nasir Toosi University of Technology, Tehran, Iran

Abstract

Experimental results show that there are uninterpreted physical phenomena in the resistivity behavior of carbon nanotubes (CNT) in terms of their diameter changes. In this paper, a model based on previously published empirical data is created. This model is used later to analysis the effect of repulsion on electron transport throughout CNT. The relationship between the resistivity and the diameter of CNT, with an introduced parameter named 'electron gas hardness' has theoretically investigated. The results show an acceptable theoretical model for the behavior of electrical resistivity to reduce the diameter of nanotubes and is predicted by physico-mathematical calculations. Furthermore, a detailed analysis of the temperature effects on the transport properties in CNT and how compare to electron-phonon interactions that have been shown to affect resistivity and a theoretical model of electrical resistivity to changes of two important parameters of diameter and temperature of carbon nanotubes, physical formulation and modeling is presented.These results are consistent with the experimental results and are generalized.   

Keywords

Main Subjects


[1] S. Iijima, Helical microtubules of graphitic carbon, 
Nature, 354 (1991) 56-58.
[2] S. Iijima , T. Ichihashi, Single-shell carbon nanotubes of 
1-nm diameter, Nature, 363 (1993) 603–605.
[3] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. 
Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth 
of carbon nanotubes with single-atomic-layer walls, 
Nature, 363 (1993) 605–607.
[4] M. S. Dresselhaus, G. Dresselhaus, P. Avouris, Editors. 
Carbon Nanotubes: Synthesis, Structure Properties 
and Applications. First Ed. Berlin, Germany: SpringerVerlag; (2001).
[5] A. Kumar, K. Sharma, A. R. Dixit, A review of the 
mechanical and thermal properties of graphene and its 
hybrid polymer nanocomposites for structural 
applications, Springer: J Mater Sci, 55 (2019) 2682–
2724.
[6] V.N. Popov, Carbon nanotubes: properties and
application ,Elsevier; Mater Sci Eng R, 43 (2004) 61–
102.
[7] SH-Y. Yue, T. Ouyang, M. Hu, Diameter Dependence of 
Lattice Thermal Conductivity of Single-Walled Carbon 
Nanotubes: Study from Ab Initio,Nature; Scientific 
Reports, 5,(2015) 15440.
[8] B. Kumanek, D. Janas, Thermal conductivity of carbon 
nanotube networks: a review, Springer: J. Mater Sci, 54 
(2019) 7397–7427.
[9] M. Jafari, M. Vaezzadeh, M. Mansouri, A. Hajnorouzi, 
Investigation of thermal conductivity of single-wall 
carbon nanotubes, Thermal Science, 15, 2, (2011)565-
570.
[10] P. R. Bandaru, Electrical Properties and Applications of 
Carbon Nanotube Structures, ASP; Journal of 
Nanoscience and Nanotechnology, 7 (2007) 1–29.
[11] K. Saeed, I. Khan, Carbon nanotubes-properties and 
applications: a review, Carbon Letters, 14 (2013) 131-
144.
[12] M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, E. 
Hernandez, Electronic, thermal and mechanical 
properties of carbon nanotubes, Phil. Trans. R. Soc. 
Lond. A, 362 (2004) 2065-2098.
[13] A. Abdulhameed, I.A. Halin, M.N. Mohtar, M.N.
Hamidon, Optimization of Surfactant Concentration in 
Carbon Nanotube Solutions for Dielectrophoretic 
Ceiling Assembly and Alignment: Implications for 
Transparent Electronics. ACS omega, 7 (2022) 3680-
3688.
[14] P. Avouris, Carbon Nanotube Electronics, Elsevier; 
Chemical Physics, 281 (2002) 429-445.
[15] T. W. Odom, J-L Huang, P. Kim, C. M. Lieber, Atomic 
structure and electronic properties of single-walled 
carbon nanotubes, Nature, 391 (1998) 62-64.
[16] M. Jafari, L. Bohloli Oskoei, Dependence of Specific Heat 
on the Chirality and Diameter of Single-Walled Carbon 
Nanotubes, Iran J Sci Technol Trans Sci 41(2017) 557–
562.
[17] M. Mansouri, H. Rezagholipour Dizaji, M. R. Saeidi, A. 
Mirzaheydari, Majid V aezzadeh, Interplay Between 
Competition Pinch Effect and Repulsion Force in 
Carbon Nanotubes, International Journal of 
Nanoscience, WSPC/175-IJN, (2022) 2250005 (8 
pages).
[18] M. Mansouri, M. Vaezzadeh, H. Rezagholipour Dizaji, , 
M. R. Saeidi, Effect of chirality surfaces overlap on 
individual carbon nanotubes resistivity. Applied 
Physics A, 128 (2022) 1-9.
[19] S. Fujita, A. Suzuki, Electrical Conduction in Graphene 
and Nanotubes. First Ed. Weinheim, Germany: WileyVCH; (2013).
[20] H. Qiu, J. Yang, Structure and Properties of Carbon 
Nanotubes. In: H. Peng, Q. Li, T. Chen, Editors. 
Industrial Applications of Carbon Nanotubes, 1st Ed. 
Shanghai: Elsevier; (2017) 47- 69.
[21] J. Doh, S-I Park, Q. Yang, N. Raghavan, The effect of 
carbon nanotube chirality on the electrical 
conductivity of polymer nanocomposites considering 
tunneling resistance, IOP Nanotechnology, 30 (2019) 
465701.
[22] A. Maffucci, S. A. Maksimenko, G. Miano, G. Y. Slepyan, 
Springer, Electrical Conductivity of Carbon Nanotubes: 
Modeling and Characterization, Materials Science, 
978 (2017) 101-128.
[23] J. Guang, W. Haifang, Y. Lei, W. Xiang, P. Rongjuan ,Y. 
Tao, Z. Yuliang, G. Xinbiao, Cytotoxicity of carbon 
nanomaterials: single-wall nanotube, multi-wall 
nanotube, and fullerene, Sci. Technol., 39 (2005) 1378-
1383.
[24] K.-T. Lau, D. Hui, The revolutionary creation of new 
advanced materials—carbon nanotube composites, 
Elsevier Composites: part B, 33 (2002) 263-277.
[25] G. Cao, Nanostructures and Nanomaterials: Synthesis, 
Properties and Applications, Journal of the American 
Chemical Society, 126 (2004) 14679-14679.
[26] A. Aqel, K.M.M. Abou, El-Nour, R. A.A. Ammar, A. AlWarthan, Carbon nanotubes, science and technology 
part (I) structure, synthesis and characterisation, 
Arabian Journal of Chemistry, 5 (2012) 1–23.
[27] S. Arai, T. Osaki, M. Hirota, M. Uejima, Fabrication of 
copper/single-walled carbon nanotube composite 
film with homogeneously dispersed nanotubes by 
electroless deposition, Elsevier; Materials Today 
Communications,7 (2016) 101-107.
[28] M. Meyyappan, Carbon Nanotubes Science &
Applications, 1st Edition, CRC Press, (2005).
[29] S. Jalili , M. Jafari, J. Habibian, Effect of Impurity on 
Electronic Properties of Carbon Nanotubes, J. Iran. 
Chem. Soc., 5, 4 (2008) pp. 641-645.
[30] J-C. Charlier, X. Blasé, S. Roche, Electronic and transport 
properties of nanotubes, Rev. Mod. Phys., 79 (2007) 
677-732.
[31] A. K. Jagadeesan, K. Thangavelu, V. Dhananjeyan, 
Carbon Nanotubes: Synthesis, Properties and 
Applications, 21st Ed, London, Intech Open (2020).
[32] L. Langer, L. Stockman, J. P. Heremans, V. Bayot, C.H. 
Olk, C. V.Haesendonck, Y. Bruynseraede, J-P. Issi, 
Electrical resistance of a carbon nanotube bundle, J. 
Mater. Res, 9 (1994) 927-932.
[33] S. Frank, P. Poncharal, Z. L. Wang, Walt A. de Heer, 
Carbon Nanotube Quantum Resistors, Science, 280 
(1998) 1744-1746.
[34] S. Sanvito, Y-K. Kwon, D. Tománek, C J. Lambert, 
Fractional Quantum Conductance in Carbon 
Nanotubes, Phys Rev Lett, 84 (2000) 1974-1977.
[35] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. 
Xu, Y. Hee Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. 
Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, 
Crystalline Ropes of Metallic Carbon Nanotubes, 
Science, 273 (1996) 483-487.
[36] P. G. Collins, M. S. Arnold, P. Avouris, Engineering 
carbon nanotubes and nanotube circuits using 
electrical breakdown, Science, 292 (2001)706-709. 
[37] H. Dai, E.W. Wong, C.M. Lieber, Probing Electrical 
Transport in Nanomaterials: Conductivity of 
Individual Carbon Nanotubes, Science, 272 (1996) 
523-526.
[38] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H. F. 
Ghaemi, T.Thio, Electrical conductivity of individual 
carbon nanotubes, Nature, 382 (1996) 54-56.
[39] Z. Zhen, H. Zhu, Structure and Properties of Graphene, 
1st Ed., Elsevier, Academic Press, (2018) 1-26.
[40] L. Barletti, Springer open, Hydrodynamic equations for 
an electron gas in graphene, J. Math. Phys., 6 (2016) 1-
17.
[41] J.S Bunch. Mechanical and Electrical Properties of 
Graphene Sheets, [Ph.D. dissertation]. Ithaca, New 
York: USA. Cornell; (2008).
[42] M. S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of 
carbon nanotubes, Elsevier; Carbon, 33 (1995) 883-
891.
[43] P. A. Gowri Sankar, K.U. kumar, Mechanical and 
Electrical Properties of Single Walled Carbon
Nanotubes: A Computational Study, European Journal 
of Scientific Research, 60 (2011) 342-358.
[44] R. Saito, M. Fujita, G. Dresselhaus, M. S Dresselhaus, 
Electronic structure of chiral graphene tubules, Appl. 
Phys. Lett. 60 (1992) 2204-2206.
[45] G. Dresselhaus, M.S. Dresselhaus, R. Saito, Physical 
Properties Of Carbon Nanotubes,1st Ed, London: 
Imperial college perss, (1998) 35-53.
[46] M.S. Purewal, Electron Transport in Single-Walled 
Carbon Nanotubes, 1st Ed. New York: Engineering and 
Applied Science, (2008).
[47] David Halliday, Robert Resnick, Jearl Walker, 
Fundamentals of Physics Extended, 10 set Ed., Wiley, 
Chapter 26, (2013).
[48] M.R. Ward, Electrical Engineering Science, Published 
by McGraw-Hill Book Co, New York, (1971) 36–40.
[49] CRC Handbook of Chemistry and Physics, 65th Edition, 
CRC Press, Inc., Boca Raton, FL, pp. F-114 - F-120, 
(1984-85).
[50] C. L. Kane, E. J. Mele, R. S. Lee, J. E. Fischer, P. Petit, H. 
Dai, A. Thess, R. E. Smalley, A.R. M. Verschueren, S. J. 
Tans, C. Dekker, Temperature-dependent resistivity of 
single-wall carbon nanotubes, Europhys. Lett, 4 6 
(1998) 683-688.
[51] J. E. Fischer, H. Dai, A. Thess, R. Lee, N. M. Hanjani, D. L. 
Dehaas R. E. Smalley, Metallic resistivity in crystalline 
ropes of single-wall carbon nanotubes, Physical 
Review B, 8 (1997) 55.
[52] G-M. Zhao, Is Room Temperature Superconductivity in 
Carbon Nanotubes Too Wonderful to Believe?, arXiv: 
cond-mat, [cond-mat. supr-con], (2003) 0307770v3.
[53] R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, R. E. Smalley, 
Conductivity enhancement in single-walled carbon 
nanotube bundles doped with K and Br, Nature 388 
(1997) 255.