Structural, electrical and optical properties of SnO2: B transparent semiconducting thin films

Document Type : Original Article

Authors

School of Physics, Damghan University, Damghan, Iran

Abstract

Boron (B) is considered as an important impurity in semiconductor physics and optoelectronic devices, especially to produce p-type silicon (p-Si). In this paper, we investigate the effect of Boron doping on the structural, electrical, optical, and photo-sensitivity properties of tin oxide (SnO2) semiconductor thin films. Boron doped tin oxide (SnO2: B) thin films were deposited on glass substrates at Ts=500 ͦ C for different atomic concentration of x=[B/Sn] = 0, 0.02, 0.04, 0.08, 0.10, 0.20, 0.30, and 0.50 by spray pyrolysis technique.The results of X-ray diffraction (XRD) analysis show the tetragonal rutile SnO2 structure with orientation along the (211) plane. The films have polycrystalline structure with granular and island-like grains morphology by Field-Emission Electron Microscope (FE-SEM). The SnO2:B films have shown n-type conductivity and decreasing - increasing behavior of electrical resistivity with B-doping for x ≤ 0.04 and x> 0.04, respectively. Also, carrier concentrations were obtained in the order of 1018-1020 cm-3. Average optical transmittance of SnO2:B thin films changed in the range of 65% to 87% in the visible region and SnO2:B (x=0.08) sample has highest transmittance. The optical gap of films was obtained in the range of 3.47-3.87 eV. From the photoconductive results, the x=0.50 film has exhibited the most optical sensitivity under light radiation.

Keywords

Main Subjects


[1] Afre, Rakesh A., Nallin Sharma, Maheshwar Sharon, and 
Madhuri Sharon. "Transparent conducting oxide films for 
various applications: A review." Reviews on advanced 
materials science 53(1) (2018) 79-89.
[2] Exarhos, G.J. and Zhou, X.D., 2007. Discovery-based design 
of transparent conducting oxide films. Thin solid films, 
515(18) 7025-7052.
[3] Ginley, David S., and John D. Perkins. "Transparent 
conductors." In Handbook of transparent conductors, pp. 
1-25. Springer, Boston, MA, 2011. 
[4] Kim, Tae Youn, Jeong Woo Lee, Won Seo Park, Seong Kee 
Park, Ki Yong Kim, In Byeong Kang, and Jae Min Myoung. 
"Development of transparent conductive oxide for thinfilm silicon solar cells." Journal of the Korean Physical 
Society 56,(2) (2010) 571-575.
[5] Atay FE, DEMIR M, Kose S, Bilgin Vİ, Akyuz I. Some physical 
properties of ultrasonically sprayed tin oxide films: the 
effect of the substrate temperature. Journal of 
optoelectronics and advanced materials.9(7) (2007).
[6] El Akkad, Fikry, and Tressia AP Paulose. "Optical transitions
and point defects in F: SnO2 films: Effect of annealing." 
Applied surface science 295 (2014) 8-17.
[7] Sancakoglu, Orkut. "Technological Background and 
Properties of Thin Film Semiconductors." In 21st Century 
Surface Science-a Handbook. IntechOpen, 2020.
[8] Sathishkumar, M., and S. Geethalakshmi. Enhanced 
photocatalytic and antibacterial activity of Cu: SnO2 
nanoparticles synthesized by microwave assisted 
method. Materials Today: Proceedings 20 (2020) 54-63.
[9] Miranda, Héctor, and Eleicer Ching-Prado. "Physical 
Properties of Semiconductor TCO-SnO2: F Thin 
Film." In 2019 7th International Engineering, 
Sciences and Technology Conference 
(IESTEC).IEEE. (2019)103-108.
[10] Ching-Prado, E., A. Watson, and H. Miranda. "Optical and 
electrical properties of fluorine doped tin oxide thin film." 
Journal of Materials Science: Materials in Electronics 
29(18) (2018) 15299-15306.
[11] Amiri, Iraj Sadegh, and Mahdi Ariannejad. Solar EnergyBased Semiconductors: Working Functions and 
Mechanisms. In Introducing CTS (Copper-Tin-Sulphide) 
as a Solar Cell by Using Solar Cell Capacitance Simulator 
(SCAPS), Springer, Cham, (2019)15-35.
[12] Wali, Qamar, Azhar Fakharuddin, and Rajan Jose. Tin
oxide as a photoanode for dye-sensitised solar cells: 
current progress and future challenges. Journal of Power 
Sources 293 (2015)1039-1052.
[13] Rajput, Rekha B., and Rohidas B. Kale.Hydro/solvothermally 
synthesized visible light driven modified SnO2 
heterostructure as a photocatalyst for water remediation: 
A review. Environmental Advances 5 (2021)100081.
[14] Chen, Yichuan, Qi Meng, Linrui Zhang, Changbao Han,Hongli 
Gao, Yongzhe Zhang, and Hui Yan. SnO2-based electron 
transporting layer materials for perovskite solar cells: A 
review of recent progress. Journal of energy chemistry 35 
(2019)144-167.
[15] Maleki, M., and S. M. Rozati. An economic CVD technique 
for pure SnO2 thin films deposition: Temperature effects. 
Bulletin of Materials Science 36(2),(2013) 217-221.
[16] Oktasendra, Fandi, Rahmat Hidayat, and Rizky Indra 
Utama. Effects of interface state density on the carrier 
transport and performance of metal-insulatorsemiconductor (MIS) type thin film solar cells. In Journal 
of Physics: Conference Series,1481(1), IOP Publishing 
(2020) 012005.
[17] Arularasu, M. V., M. Anbarasu, S. Poovaragan, R. Sundaram, 
K. Kanimozhi, C. Maria Magdalane, K. Kaviyarasu et al. 
Structural, optical, morphological and microbial studies 
on SnO2 nanoparticles prepared by co-precipitation 
method. Journal of nanoscience and nanotechnology 
18(5),(2018) 3511-3517.
[18] Murakami, K., Nakajima, K. and Kaneko, S., Initial growth 
of SnO2 thin film on the glass substrate deposited by the 
spray pyrolysis technique. Thin Solid Films, 
515(24),(2007) 8632-8636
[19] Elangovan, E., and K. Ramamurthi. Studies on microstructural and electrical properties of spray-deposited 
fluorine-doped tin oxide thin films from low-cost 
precursor. Thin solid films 476 (2)(2005) 231-236.
[20] Taniguchi, I., D. Song, and M. Wakihara. Electrochemical 
properties of LiM1/6Mn11/6O4 (M= Mn, Co, Al and Ni) as 
cathode materials for Li-ion batteries prepared by 
ultrasonic spray pyrolysis method. Journal of power 
Sources 109(2) (2002) 333-339.
[21] Kaviyarasu, K., Prem Anand Devarajan, S. Stanly John
Xavier, S. Augustine Thomas, and S. Selvakumar. One pot 
synthesis and characterization of cesium doped SnO2 
nanocrystals via a hydrothermal process. Journal of 
Materials Science & Technology 28 (1), (2012)15-20.
[22] Sánchez-García, M. Alberto, Arturo Maldonado, Luis 
Castañeda, Rutilo Silva-González, and María de la Luz 
Olvera. Characteristics of SnO2: F thin films deposited by 
ultrasonic spray pyrolysis: effect of water content in 
solution and substrate temperature. Materials Sciences 
and Applications, 3(10) (2012) 690-696.
[23] Geraldo, Viviany, Luis Vicente de Andrade Scalvi, Evandro 
Augusto de Morais, Celso Valentim Santilli, and Sandra 
Helena Pulcinelli. "Sb doping effects and oxygen 
adsorption in SnO2 thin films deposited via sol-gel." 
Materials Research, 6 (2003) 451-456.
[24] Zhang, B., Tian, Y., Zhang, J.X. and Cai, W., The studies on the 
role of fluorine in SnO2: F films prepared by spray 
pyrolysis with SnCl4. Journal of Optoelectronics and 
Advanced Materials, 13(1),(2011) 89-93.
[25] M. M. Bagheri-Mohagheghi, N. Shahtahmasebi, M. R.
Alinejad, A. Youssefi, and M. Shokooh-Saremi. Fe-doped 
SnO2 transparent semi-conducting thin films deposited 
by spray pyrolysis technique: Thermoelectric and p-type 
conductivity properties. Solid State Sciences 11(1),(2009) 
233-239.
[26] Turgut, G., Sonmez, E., Aydın, S., Dilber, R., & Turgut, U. The 
effect of Mo and F double doping on structural, 
morphological, electrical and optical properties of spray 
deposited SnO2 thin films. Ceramics International, 40(8), 
(2014)12891-12898.
[27] Doyan, Aris, Susilawati, and Yanika Diah Imawanti. 
Synthesis and Characterization of SnO2 thin layer with a 
doping Aluminum is deposited on Quartz Substrates. In 
AIP Conference Proceedings, 1801(1)(2017) 020005.
[28] Patil, G. E., D. D. Kajale, S. D. Shinde, V. G. Wagh, V. B. 
Gaikwad, and G. H. Jain. Synthesis of Cu-doped SnO 2 thin 
films by spray pyrolysis for gas sensor application. In 
Advancement in Sensing Technology,(2013) 299-311. 
Springer, Berlin, Heidelberg.
[29] Dive, A., Varley, J. and Banerjee, S., In2O3-Ga2O3 Alloys as 
Potential Buffer Layers in CdTe Thin-Film Solar Cells. 
Physical Review Applied, 15(3),(2021) 034028.
[30] Braunschweig, Holger, Rian D. Dewhurst, Kai Hammond, 
Jan Mies, Krzysztof Radacki, and Alfredo Vargas. Ambienttemperature isolation of a compound with a boron-boron 
triple bond. Science 336 (6087), (2012) 1420-1422.
[31] Thomas, Boben, Skariah Benoy, and K. K. Radha. Influence 
of Cs doping in spray deposited SnO2 thin films for LPG 
sensors. Sensors and Actuators B: Chemical 133 
(2),(2008) 404-413.
[32] Lee, W.Y., Lee, H., Ha, S., Lee, C., Bae, J.H., Kang, I.M. and Jang, 
J., 2020. Improved negative bias stability of sol–gel 
processed Ti-doped SnO2 thin-film transistors. 
Semiconductor Science and Technology, 35(11), 
(2020)115023.
[33] Girtan, M., Rusu, G.I., Rusu, G.G. and Gurlui, S., Influence of 
oxidation conditions on the properties of indium oxide 
thin films. Applied surface science, 162 (2000) 492-498.
[34] Burstein, E., Anomalous optical absorption limit in InSb. 
Physical review, 93(3),(1954) 632.
[35] Zinchenko, T., Pecherskaya, E., & Artamonov, D. The 
properties study of transparent conductive oxides (TCO) 
of tin dioxide (ATO) doped by antimony obtained by spray 
pyrolysis. AIMS Materials Science, 6(2), (2019) 276-287.
[36] Khan, A. and Rahman, F., Study of microstructural 
and optical properties of nanocrystalline indium 
oxide: A transparent conducting oxide (TCO). In 
AIP Conference Proceedings, 2115(1),(2019) 
030091. AIP Publishing LLC.
[37] Kumar, S., Sharma, R., Gupta, A., Tyagi, A., Singh, P., Kumar, 
A. and Kumar, V., Recent insights into SnO 2-based 
engineered nanoparticles for sustainable H2 generation 
and remediation of pesticides. New Journal of Chemistry, 
46(9),(2022) 4014-4048.
[38] Türkyılmaz, Şenay Şen, Nuray Güy, and Mahmut Özacar. 
Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO 
nanostructures synthesized by hydrothermal method: 
The synergistic/antagonistic effect between ZnO and 
metals. Journal of Photochemistry and Photobiology A: 
Chemistry 341 (2017) 39-50.
[39] Mishra, Umesh K., and Jasprit Singh. Semiconductor device 
physics and design.83. Dordrecht: Springer, 2008.
[40] Zhu, Xinxu, Yijie Li, Hongchao Zhang, Longfei Song, 
Hongliang Zu, Yuanbin Qin, Lei Liu, Ying Li, and Fengyun 
Wang. High-performance field effect transistors based on 
large ratio metal (Al, Ga, Cr) doped In2O3 nanofibers. 
Journal of Alloys and Compounds. 830 (2020)154578.