The effect of liquid nitrogen-microwave treatments on the structural, optical, and tribological properties of WS2 nanoflakes

Document Type : Original Article


1 Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2 Nano Research lab, Physics Department, Faculty of Science, Central Tehran Branch, Islamic Azad university

3 Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, Iran


WS2 was successfully synthesized by the hydrothermal method under various liquid nitrogen and microwave treatments. X-ray diffraction (XRD) analysis showed the presence of multiple WS2 phases, of which hexagonal was the dominant phase. The morphology of the samples was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and WS2 exfoliation was confirmed after liquid nitrogen and microwave treatments. Fourier transform infrared spectroscopy (FTIR) confirmed WS2 exfoliation during the exfoliation process. Optical bandgap calculation showed an increase in the exfoliation WS2 bandwidth to 4.7 eV, which is large enough for the massive indirect bandwidth (1.3 eV) of WS2, indicating the effect of quantum confinement. Decreased photoluminescence (PL) showed the production of defects in the samples during the processes. The tribological properties of WS2 nanoflakes as an additive in oil showed that the coefficient of friction and wear performance of the oil were significantly improved by adding WS2 nanoflakes synthesized by the hydrothermal method under different liquid nitrogen and microwave treatments. The results show that WS2 nanoflakes with an improved coefficient of friction and wear performance can be a promising additive that could open a new avenue for the large-scale production of tribological materials.


Main Subjects

[1] M. Ali, H. Xianjun, Improving the tribological behavior 
of internal combustion engines via the addition of 
nanoparticles to engine oils, Nanotechnol, A 4 (2015) 
[2] J. Kogovšek, M. Kalin, Various MoS2-, WS2- and C-Based 
Micro- and Nanoparticles in Boundary 
Lubrication, Tribol. Lett, A 53 (2014) 585. 
[3] E. Ettefaghi, H. Ahmadi, A. Rashidi, A. Nouralishahi, S. 
Mohtasebi, Preparation and thermal properties of oilbased nanofluid from multi-walled carbon nanotubes 
and engine oil as nano-lubricant, INT COMMUN HEAT 
MASS, A 46 (2013) 142.
[4] H. Fu, G. Yan, M. Li, H. Wang, Y. Chen, C. Yan, C. Lin, N. 
Jiang, J. Yu, Graphene as a nanofiller for enhancing the 
tribological properties and thermal conductivity of 
base grease, RSC Adv, A 72 (2019) 42481.
[5] C. Altavilla, M. Sarno, P. Ciambelli, A. Senatore, V. 
Petrone, New ‘chimie douce’ approach to the synthesis 
of hybrid nanosheets of MoS2on CNT and their antifriction and anti-wear properties, Nanotechnology, A 
24 (2013) 125601. 
[6] N. Win Khun, H. Zhang, L. Hoon Lim, J. Yang, Mechanical 
and Tribological Properties of Graphene Modified 
Epoxy Composites, (KMUTNB) Int. J. App. Sci, A 8 
(2015) 101.
[7] E. Hu, Y. Xu, K. Hu, X. Hu, Tribological properties of 3 
types of MoS2 additives in different base 
greases, LUBR SCI, A 29 (2017) 541.
[8] M. Charoo, M. Wani, M. Hanief, M. Rather, Tribological 
Properties of MoS2 Particles as Lubricant Additive on 
EN31 Alloy Steel and AISI 52100 Steel 
Ball, Proceedings, A 4 (2017) 9967.
[9] Y. Wu, H. Li, L. Ji, L. Liu, Y. Ye, J. Chen, H. Zhou, Structure, 
Mechanical, and Tribological Properties of MoS2/aC:H Composite Films, Tribol. Lett, A 52 (2013) 371.
[10] M. Ratoi, V. Niste, J. Walker, J. Zekonyte, Mechanism of 
Action of WS2 Lubricant Nanoadditives in HighPressure Contacts, Tribol. Lett, A 52 (2013) 81.
[11] I. Jenei, F. Svahn, S. Csillag, Correlation Studies of WS 2 
Fullerene-Like Nanoparticles Enhanced Tribofilms: A 
Scanning Electron Microscopy Analysis, Tribol. Lett, A 
51 (2013) 461.
[12] P. Aldana, B. Vacher, T. Le Mogne, M. Belin, B. Thiebaut,
F. Dassenoy, Action Mechanism of WS2 Nanoparticles 
with ZDDP Additive in Boundary Lubrication 
Regime, Tribol. Lett, A 56 (2014) 249.
[13] V. Niste, H. Tanaka, M. Ratoi, J. Sugimura, WS2 nano 
additive lubricant for applications affected by 
hydrogen embrittlement, RSC Adv, A 5 (2015) 40678.
[14] S. Ingole, A. Charanpahari, A. Kakade, S. Umare, D. 
Bhatt, J. Menghani, Tribological behavior of nano TiO2 
as an additive in base oil, Wear, A 301 (2013) 776.
[15] A. Hernandez Battez, J. Fernandez Rico, A. Navas Arias, 
J. Viesca Rodriguez, R. Chou Rodriguez, J. Diaz 
Fernandez, The tribological behavior of ZnO 
nanoparticles as an additive to PAO6, Wear, A 261 
(2006) 256.
[16] J. Guo, G. Barber, D. Schall, Q. Zou, S. Jacob, Tribological
properties of ZnO and WS2 nanofluids using different 
surfactants, Wear, A15 (2017) 382.
[17] L. Gara, Q. Zou, Friction and Wear Characteristics of 
Oil-Based ZnO Nanofluids, Tribology T, A 56 (2013) 
[18] L. Taran, R. Rasuli, Cost-effective liquid-phase
exfoliation of molybdenum disulfide by prefreezing 
and thermal-shock, ADV POWDER TECHNOL, A 28 
(2017) 2996.
[19] B. Li, X. Wang, W. Liu, Q. Xue, Tribochemistry and 
antiwear mechanism of organic–inorganic 
nanoparticles as lubricant additives, Tribol. Lett, A 22 
(2006) 79.
[20] Lince, Jeffrey R. "Effective application of solid 
lubricants in spacecraft mechanisms." Lubricants 8, 7 
(2020) 74.
[21] Freschi, Marco, Matteo Di Virgilio, Gabriele Zanardi, 
Marco Mariani, Nora Lecis, and Giovanni Dotelli. 
"Employment of Micro-and Nano-WS2 Structures to 
Enhance the Tribological Properties of Copper Matrix 
Composites." Lubricants 9, 5 (2021) 53.
[22] Fayaz, Syed Danish, and M. F. Wani. "Insights into the 
tribological behavior of IF-WS2 nanoparticle 
reinforced mild extreme pressure lubrication for
coated chromium/bulk grey cast iron interface." 
Proceedings of the Institution of Mechanical 
Engineers, Part J: Journal of Engineering Tribology 
(2021) 1350650120964026.
[23] N. Wu, N. Hu, J. Wu, G. Zhou, Tribology Properties of 
Synthesized Multiscale Lamellar WS2 and Their 
Synergistic Effect with Anti-Wear Agent ZDDP, Appl. 
Sci, A 10 (2019) 115.
[24] X. Zhu, J. Yang, X. She, Y. Song, J. Qian, Y. Wang, H. Xu, H. 
Li, Q. Yan, Rapid synthesis of ultrathin 2D materials 
through liquid-nitrogen and microwave treatments, J. 
mater. chem, A 7 (2019) 5209.
[25] Q. Wang, K. Kalantar-Zadeh, A. Kis, J. Coleman, M. 
Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. 
Nanotechnol, A 7 (2012) 699.
[26] S. Cao, T. Liu, S. Hussain, W. Zeng, X. Peng, F. Pan, 
Hydrothermal synthesis of variety low dimensional 
WS2 nanostructures, Mater. Lett., A 129 (2014) 205.
[27] M. Piao, J. Chu, X. Wang, Y. Chi, H. Zhang, C. Li, H. Shi, 
M.K. Joo, Hydrothermal synthesis of stable metallic 1T 
phase WS2 nanosheets for thermoelectric 
application, Nanotechnology, A 29 (2017) 025705.
[28] G. Cunningham, M. Lotya, C. Cucinotta, S. Sanvito, S. 
Bergin, R. Menzel, M. Shaffer, J. Coleman, Solvent 
Exfoliation of Transition Metal Dichalcogenides: 
Dispersibility of Exfoliated Nanosheets Varies Only 
Weakly between Compounds, ACS Nano, A 6 (2012) 
[29] A. Winchester, S. Ghosh, S. Feng, A.L. Elias, T. Mallouk, 
M. Terrones, S. Talapatra, Electrochemical 
Characterization of Liquid Phase Exfoliated TwoDimensional Layers of Molybdenum Disulfide, ACS 
APPL MATER INTER, A 6 (2014) 2125.
[30] K. Zhou, N. Mao, H. Wang, Y. Peng, H. Zhang, A MixedSolvent Strategy for Efficient Exfoliation of Inorganic 
Graphene Analogues, Chem. Int. Ed, A 123 (2011) 
[31] U. Halim, C.R. Zheng, Y. Chen, Z. Lin, S. Jiang, R. Cheng, 
Y. Huang, X. Duan, A rational design of cosolvent 
exfoliation of layered materials by directly probing 
liquid–solid interaction, Nat. Commun, A 4 (2013) 1.
[32] X. Liu, J. Liu, D. Zhan, J. Yan, J. Wang, D. Chao, L. Lai, M. 
Chen, J. Yin, Z. Shen, Repeated microwave-assisted 
exfoliation of expandable graphite for the preparation 
of large scale and high-quality multi-layer graphene, 
RSC advances, A 3 (2013) 11601.
[33] Z. Liu, Y. Wang, Z. Wang, Y. Yao, J. Dai, S. Das, L. Hu, olvothermal microwave-powered two-dimensional 
material exfoliation, ChemComm, A 33 (2016) 5757.
[34] A. Albu-Yaron, M. Levy, R. Tenne, R. Popovitz-Biro, M. 
Weidenbach, M. Bar-Sadan, L. Houben, A. Enyashin, G. 
Seifert, D. Feuermann, E. Katz, J. Gordon, MoS2 Hybrid 
Nanostructures: From Octahedral to Quasi-Spherical 
Shells within Individual Nanoparticles, Angew. Chem. 
Int. Ed, A 8 (2011) 1810.
[35] Y. Lin, D. Dumcenco, Y. Huang, K. Suenaga, Atomic 
mechanism of the semiconducting-to-metallic phase 
transition in single-layered MoS2, Nat. Nanotechnol, A 
9 (2014) 391.
[36] K. Peng, H. Wang, X. Li, J. Wang, Z. Cai, L. Su, X. Fan, 
Emerging WS2/montmorillonite composite 
nanosheets as an efficient hydrophilic photocatalyst 
for aqueous phase reactions, Sci. Rep, A 9 (2019) 1.
[37] S. Hazarika, D. Mohanta, norganic fullerene-type WS2
nanoparticles: processing, characterization and its 
photocatalytic performance on malachite green, APPL 
PHYS A, A 123 (2017) 381.
[38] X. Zhang, J. Wang, H. Xu, H. Tan, X. Ye, Preparation and 
Tribological Properties of WS2 Hexagonal Nanoplates 
and Nanoflowers, Nanomaterials, A 9 (2019) 840.
[39] Q. Pang, Y. Gao, Y. Zhao, Y. Ju, H. Qiu, Y. Wei, B. Liu, B. 
Zou, F. Du, G. Chen, improved Lithium-Ion and 
Sodium-Ion Storage Properties from Few-Layered 
WS2 Nanosheets Embedded in a Mesoporous CMK-3 
Matrix, Chem. Eur. J, A 23 (2017) 7074.
[40] X. Zhao, X. Ma, J. Sun, D. Li, X. Yang, Enhanced Catalytic 
Activities of Surfactant-Assisted Exfoliated WS2
Nanodots for Hydrogen Evolution, ACS Nano, A 10 
(2016) 2159.
[41] B. Mahler, V. Hoepfner, K. Liao, G. Ozin, Colloidal 
Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: 
Applications for Photocatalytic Hydrogen Evolution, J. 
Am. Chem. Soc, A 136 (2014) 14121.
[42] S. Sharma, S. Bhagat, J. Singh, R. Singh, S. Sharma, 
Excitation-dependent photoluminescence from WS2
nanostructures synthesized via top-down approach, J. 
Mater. Sci, A 52 (2017) 11326.
[43] S. Vattikuti, C. Byon, Effect of CTAB Surfactant on 
Textural, Structural, and Photocatalytic Properties of 
Mesoporous WS2, Sci. Adv. Mater, A 7 (2015) 2639.
[44] J. Wu, G. Yue, Y. Xiao, M. Huang, J. Lin, L. Fan, Z. Lan, J. 
Lin, Glucose Aided Preparation of Tungsten 
Sulfide/Multi-Wall Carbon Nanotube Hybrid and Use 
as Counter Electrode in Dye-Sensitized Solar Cells, 
ACS APPL MATER INTER, A 4 (2012) 6530.
[45] R. A. Ismail, G. M. Sulaiman, S. A. Abdulrahman, T. R. 
Marzoog, Solvothermal synthesis of Au@Fe3O4
nanoparticles for antibacterial applications, Mater. 
Sci. Eng., C, 53 (2015) 286–297. 
[46] Li N. Chen, J. Shi, Y.-P. Anal. Magnetic polyethyleneimine 
functionalized reduced graphene oxide as a novel 
magnetic solid-phase extraction adsorbent for the 
determination of polar acidic herbicides in rice, Chim. 
Acta, 949 (2017) 23–34.
[47] Y. Yan, C. Zhang, W. Gu, C. Ding, X. Li, Y. Xian, Facile 
Synthesis of Water-Soluble WS2 Quantum Dots for 
Turn-On Fluorescent Measurement of Lipoic Acid, J. 
Phys. Chem C, A 120 (2016) 12170.
[48] A. Bayat, E. Saievar-Iranizad, Synthesis of blue
photoluminescent WS2 quantum dots via ultrasonic 
cavitation, J. Lumin, A 185 (2017) 236.
[49] G. Frey, S. Elani, M. Homyonfer, Y. Feldman, R. Tenne, 
Optical-absorption spectra of inorganic fullerenelike
MS2 (M=Mo,W), Phys. Rev, A 57 (1998) 6666.
[50] K. He, N. Kumar, L. Zhao, Z. Wang, K. Mak, H. Zhao, J. 
Shan, Tightly Bound Excitons in MonolayerWSe2, 
PHYS REV LETT, A 113 (2014) 026803.
[51] S. Xu, D. Li, P. Wu, One-Pot, Facile, and Versatile 
Synthesis of Monolayer MoS2/WS2 Quantum Dots as 
Bioimaging Probes and Efficient Electrocatalysts for 
Hydrogen Evolution Reaction, Adv. Funct. Mater, A 25 
(2015) 1127.
[52] H. Mishra, S. Umrao, J. Singh, R. Srivastava, R. Ali, A. 
Misra, A. Srivastava, pH Dependent Optical Switching 
and Fluorescence Modulation of Molybdenum Sulfide 
Quantum Dots, Advanced Optical Materials 5, 9 (2017) 
[53] F. Laatar, M. Hassen, C. Amri, F. Laatar, A. Smida, H. 
Ezzaouia, Fabrication of CdSe nanocrystals using 
porous anodic alumina and their optical properties, J. 
Lumin, A 178 (2016) 13.
[54] N. Ben Brahim, M. Poggi, N. Haj Mohamed, R. Ben 
Chaâbane, M. Haouari, M. Negrerie, H. Ben Ouada, 
Synthesis, characterization and spectral temperaturedependence of thioglycerol-CdSe nanocrystals, J. 
Lumin, A 177 (2016) 402.
[55] Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H. Liu, From 
UV to Near-Infrared, WS2 Nanosheet: A Novel 
Photocatalyst for Full Solar Light Spectrum 
Photodegradation, Adv. Mater, A 27 (2015) 363.
[56] S. Notley, High yield production of photoluminescent 
tungsten disulphide nanoparticles, J. Colloid Interface 
Sci, A 15 (2013) 160.
[57] H. Jiang, Electronic Band Structures of Molybdenum 
and Tungsten Dichalcogenides by the GW Approach, J. 
Phys. Chem, A 116 (2012) 7664.
[58] D. Feng, Z. Xu, T. Jia, X. Li, S. Gong, Quantum size effects 
on exciton states in indirect-gap quantum dots, Phys. 
Rev B, A 68 (2003) 035334.
[59] X. Duan, Q. Liu, G. Wang, X. Su, WS2 quantum dots as a 
sensitive fluorescence probe for the detection of 
glucose, MICROCHIM ACTA, A 207 (2019) 491.
[60] Lin, T. N., S. R. M. Santiago, S. P. Caigas, C. T. Yuan, T. Y. 
Lin, J. L. Shen, and Y. F. Chen. "Many-body effects in 
doped WS2 monolayer quantum disks at room 
temperature." npj 2D Materials and Applications 3, 1 
(2019) 1-6.
[61] Y. S. Liu, X. M. Hu, T. Wang, and D. M. Liu, “Reduced 
Binding Energy and Layer-Dependent Exciton 
Dynamics in Monolayer and Multilayer WS2,” ACS 
Nano 13(12) (2019) 14416–14425.
[62] A. Hichri, I. B. Amara, S. Ayari, and S. Jaziri, “Dielectric 
environment and/or random disorder effects on 
free,charged and localized excitonic states in 
monolayer WS2,” J. Phys.: Condens. Matter 29(43) 
(2017) 435305.
[63] Xu, Xuejun, Lihui Li, Mingming Yang, Qinglin Guo, Ying 
Wang, Xiaoli Li, Xiujuan Zhuang, and Baolai Liang. 
"Localized state effect and exciton dynamics for 
monolayer WS2." Optics Express 29, 4 (2021) 5856-
[64] H. Wang, C. Zhang, W. Chan, S. Tiwari, F. Rana, Ultrafast 
response of monolayer molybdenum disulfide 
photodetectors, A 6 (2015) 339.
[65] Ma, Churong, Jiahao Yan, Yingcong Huang, and Guowei 
Yang. Photoluminescence manipulation of WS2 flakes 
by an individual Si nanoparticle, Materials Horizons 6, 
1 (2019) 97-106.
[66] M. Mahdavi, S. Kimiagar, and F. Abrinaei, Effect of 
Laser Energy on the Tribology Properties of MoS2
Flakes, Tribology in Industry 42(2) (2020).
[67] Wu, Na, Ningning Hu, Gongbo Zhou, and Jinhe Wu. 
"Tribological properties of lubricating oil with 
micro/nano-scale WS2 particles." Journal of 
Experimental Nanoscience 13, 1 (2018) 27-38.
[68] Zhang, Xianghua, Hongxiang Xu, Jiangtao Wang, Xia Ye, 
Weining Lei, Maoquan Xue, Hua Tang, and 
Changsheng Li. "Synthesis of ultrathin WS2
nanosheets and their tribological properties as 
lubricant additives." Nanoscale research letters 11, 1 
(2016) 1-9.
[69] Jiang, Zhengquan, Yujuan Zhang, Guangbin Yang, 
Kunpeng Yang, Shengmao Zhang, Laigui Yu, and 
Pingyu Zhang. "Tribological properties of oleylaminemodified ultrathin WS2 nanosheets as the additive in 
polyalpha olefin over a wide temperature range." 
Tribology Letters 61, 24 (2016) 3.
[70] A. Bos, Wear in the four-ball apparatus: relationship 
between the displacement of the upper ball and the 
diameter of the wear scars on the lower balls, Wear, A 
41 (1977) 191.
[71] T.B. Lane, the flash temperature parameter: A criterion 
for assessing EP performance in the four-ball machine, 
J JPN PETROL INST, A 4 (1961) 254.