[1] M. Ali, H. Xianjun, Improving the tribological behavior
of internal combustion engines via the addition of
nanoparticles to engine oils, Nanotechnol, A 4 (2015)
347.
[2] J. Kogovšek, M. Kalin, Various MoS2-, WS2- and C-Based
Micro- and Nanoparticles in Boundary
Lubrication, Tribol. Lett, A 53 (2014) 585.
[3] E. Ettefaghi, H. Ahmadi, A. Rashidi, A. Nouralishahi, S.
Mohtasebi, Preparation and thermal properties of oilbased nanofluid from multi-walled carbon nanotubes
and engine oil as nano-lubricant, INT COMMUN HEAT
MASS, A 46 (2013) 142.
[4] H. Fu, G. Yan, M. Li, H. Wang, Y. Chen, C. Yan, C. Lin, N.
Jiang, J. Yu, Graphene as a nanofiller for enhancing the
tribological properties and thermal conductivity of
base grease, RSC Adv, A 72 (2019) 42481.
[5] C. Altavilla, M. Sarno, P. Ciambelli, A. Senatore, V.
Petrone, New ‘chimie douce’ approach to the synthesis
of hybrid nanosheets of MoS2on CNT and their antifriction and anti-wear properties, Nanotechnology, A
24 (2013) 125601.
[6] N. Win Khun, H. Zhang, L. Hoon Lim, J. Yang, Mechanical
and Tribological Properties of Graphene Modified
Epoxy Composites, (KMUTNB) Int. J. App. Sci, A 8
(2015) 101.
[7] E. Hu, Y. Xu, K. Hu, X. Hu, Tribological properties of 3
types of MoS2 additives in different base
greases, LUBR SCI, A 29 (2017) 541.
[8] M. Charoo, M. Wani, M. Hanief, M. Rather, Tribological
Properties of MoS2 Particles as Lubricant Additive on
EN31 Alloy Steel and AISI 52100 Steel
Ball, Proceedings, A 4 (2017) 9967.
[9] Y. Wu, H. Li, L. Ji, L. Liu, Y. Ye, J. Chen, H. Zhou, Structure,
Mechanical, and Tribological Properties of MoS2/aC:H Composite Films, Tribol. Lett, A 52 (2013) 371.
[10] M. Ratoi, V. Niste, J. Walker, J. Zekonyte, Mechanism of
Action of WS2 Lubricant Nanoadditives in HighPressure Contacts, Tribol. Lett, A 52 (2013) 81.
[11] I. Jenei, F. Svahn, S. Csillag, Correlation Studies of WS 2
Fullerene-Like Nanoparticles Enhanced Tribofilms: A
Scanning Electron Microscopy Analysis, Tribol. Lett, A
51 (2013) 461.
[12] P. Aldana, B. Vacher, T. Le Mogne, M. Belin, B. Thiebaut,
F. Dassenoy, Action Mechanism of WS2 Nanoparticles
with ZDDP Additive in Boundary Lubrication
Regime, Tribol. Lett, A 56 (2014) 249.
[13] V. Niste, H. Tanaka, M. Ratoi, J. Sugimura, WS2 nano
additive lubricant for applications affected by
hydrogen embrittlement, RSC Adv, A 5 (2015) 40678.
[14] S. Ingole, A. Charanpahari, A. Kakade, S. Umare, D.
Bhatt, J. Menghani, Tribological behavior of nano TiO2
as an additive in base oil, Wear, A 301 (2013) 776.
[15] A. Hernandez Battez, J. Fernandez Rico, A. Navas Arias,
J. Viesca Rodriguez, R. Chou Rodriguez, J. Diaz
Fernandez, The tribological behavior of ZnO
nanoparticles as an additive to PAO6, Wear, A 261
(2006) 256.
[16] J. Guo, G. Barber, D. Schall, Q. Zou, S. Jacob, Tribological
properties of ZnO and WS2 nanofluids using different
surfactants, Wear, A15 (2017) 382.
[17] L. Gara, Q. Zou, Friction and Wear Characteristics of
Oil-Based ZnO Nanofluids, Tribology T, A 56 (2013)
236.
[18] L. Taran, R. Rasuli, Cost-effective liquid-phase
exfoliation of molybdenum disulfide by prefreezing
and thermal-shock, ADV POWDER TECHNOL, A 28
(2017) 2996.
[19] B. Li, X. Wang, W. Liu, Q. Xue, Tribochemistry and
antiwear mechanism of organic–inorganic
nanoparticles as lubricant additives, Tribol. Lett, A 22
(2006) 79.
[20] Lince, Jeffrey R. "Effective application of solid
lubricants in spacecraft mechanisms." Lubricants 8, 7
(2020) 74.
[21] Freschi, Marco, Matteo Di Virgilio, Gabriele Zanardi,
Marco Mariani, Nora Lecis, and Giovanni Dotelli.
"Employment of Micro-and Nano-WS2 Structures to
Enhance the Tribological Properties of Copper Matrix
Composites." Lubricants 9, 5 (2021) 53.
[22] Fayaz, Syed Danish, and M. F. Wani. "Insights into the
tribological behavior of IF-WS2 nanoparticle
reinforced mild extreme pressure lubrication for
coated chromium/bulk grey cast iron interface."
Proceedings of the Institution of Mechanical
Engineers, Part J: Journal of Engineering Tribology
(2021) 1350650120964026.
[23] N. Wu, N. Hu, J. Wu, G. Zhou, Tribology Properties of
Synthesized Multiscale Lamellar WS2 and Their
Synergistic Effect with Anti-Wear Agent ZDDP, Appl.
Sci, A 10 (2019) 115.
[24] X. Zhu, J. Yang, X. She, Y. Song, J. Qian, Y. Wang, H. Xu, H.
Li, Q. Yan, Rapid synthesis of ultrathin 2D materials
through liquid-nitrogen and microwave treatments, J.
mater. chem, A 7 (2019) 5209.
[25] Q. Wang, K. Kalantar-Zadeh, A. Kis, J. Coleman, M.
Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat.
Nanotechnol, A 7 (2012) 699.
[26] S. Cao, T. Liu, S. Hussain, W. Zeng, X. Peng, F. Pan,
Hydrothermal synthesis of variety low dimensional
WS2 nanostructures, Mater. Lett., A 129 (2014) 205.
[27] M. Piao, J. Chu, X. Wang, Y. Chi, H. Zhang, C. Li, H. Shi,
M.K. Joo, Hydrothermal synthesis of stable metallic 1T
phase WS2 nanosheets for thermoelectric
application, Nanotechnology, A 29 (2017) 025705.
[28] G. Cunningham, M. Lotya, C. Cucinotta, S. Sanvito, S.
Bergin, R. Menzel, M. Shaffer, J. Coleman, Solvent
Exfoliation of Transition Metal Dichalcogenides:
Dispersibility of Exfoliated Nanosheets Varies Only
Weakly between Compounds, ACS Nano, A 6 (2012)
3468.
[29] A. Winchester, S. Ghosh, S. Feng, A.L. Elias, T. Mallouk,
M. Terrones, S. Talapatra, Electrochemical
Characterization of Liquid Phase Exfoliated TwoDimensional Layers of Molybdenum Disulfide, ACS
APPL MATER INTER, A 6 (2014) 2125.
[30] K. Zhou, N. Mao, H. Wang, Y. Peng, H. Zhang, A MixedSolvent Strategy for Efficient Exfoliation of Inorganic
Graphene Analogues, Chem. Int. Ed, A 123 (2011)
11031.
[31] U. Halim, C.R. Zheng, Y. Chen, Z. Lin, S. Jiang, R. Cheng,
Y. Huang, X. Duan, A rational design of cosolvent
exfoliation of layered materials by directly probing
liquid–solid interaction, Nat. Commun, A 4 (2013) 1.
[32] X. Liu, J. Liu, D. Zhan, J. Yan, J. Wang, D. Chao, L. Lai, M.
Chen, J. Yin, Z. Shen, Repeated microwave-assisted
exfoliation of expandable graphite for the preparation
of large scale and high-quality multi-layer graphene,
RSC advances, A 3 (2013) 11601.
[33] Z. Liu, Y. Wang, Z. Wang, Y. Yao, J. Dai, S. Das, L. Hu, olvothermal microwave-powered two-dimensional
material exfoliation, ChemComm, A 33 (2016) 5757.
[34] A. Albu-Yaron, M. Levy, R. Tenne, R. Popovitz-Biro, M.
Weidenbach, M. Bar-Sadan, L. Houben, A. Enyashin, G.
Seifert, D. Feuermann, E. Katz, J. Gordon, MoS2 Hybrid
Nanostructures: From Octahedral to Quasi-Spherical
Shells within Individual Nanoparticles, Angew. Chem.
Int. Ed, A 8 (2011) 1810.
[35] Y. Lin, D. Dumcenco, Y. Huang, K. Suenaga, Atomic
mechanism of the semiconducting-to-metallic phase
transition in single-layered MoS2, Nat. Nanotechnol, A
9 (2014) 391.
[36] K. Peng, H. Wang, X. Li, J. Wang, Z. Cai, L. Su, X. Fan,
Emerging WS2/montmorillonite composite
nanosheets as an efficient hydrophilic photocatalyst
for aqueous phase reactions, Sci. Rep, A 9 (2019) 1.
[37] S. Hazarika, D. Mohanta, norganic fullerene-type WS2
nanoparticles: processing, characterization and its
photocatalytic performance on malachite green, APPL
PHYS A, A 123 (2017) 381.
[38] X. Zhang, J. Wang, H. Xu, H. Tan, X. Ye, Preparation and
Tribological Properties of WS2 Hexagonal Nanoplates
and Nanoflowers, Nanomaterials, A 9 (2019) 840.
[39] Q. Pang, Y. Gao, Y. Zhao, Y. Ju, H. Qiu, Y. Wei, B. Liu, B.
Zou, F. Du, G. Chen, improved Lithium-Ion and
Sodium-Ion Storage Properties from Few-Layered
WS2 Nanosheets Embedded in a Mesoporous CMK-3
Matrix, Chem. Eur. J, A 23 (2017) 7074.
[40] X. Zhao, X. Ma, J. Sun, D. Li, X. Yang, Enhanced Catalytic
Activities of Surfactant-Assisted Exfoliated WS2
Nanodots for Hydrogen Evolution, ACS Nano, A 10
(2016) 2159.
[41] B. Mahler, V. Hoepfner, K. Liao, G. Ozin, Colloidal
Synthesis of 1T-WS2 and 2H-WS2 Nanosheets:
Applications for Photocatalytic Hydrogen Evolution, J.
Am. Chem. Soc, A 136 (2014) 14121.
[42] S. Sharma, S. Bhagat, J. Singh, R. Singh, S. Sharma,
Excitation-dependent photoluminescence from WS2
nanostructures synthesized via top-down approach, J.
Mater. Sci, A 52 (2017) 11326.
[43] S. Vattikuti, C. Byon, Effect of CTAB Surfactant on
Textural, Structural, and Photocatalytic Properties of
Mesoporous WS2, Sci. Adv. Mater, A 7 (2015) 2639.
[44] J. Wu, G. Yue, Y. Xiao, M. Huang, J. Lin, L. Fan, Z. Lan, J.
Lin, Glucose Aided Preparation of Tungsten
Sulfide/Multi-Wall Carbon Nanotube Hybrid and Use
as Counter Electrode in Dye-Sensitized Solar Cells,
ACS APPL MATER INTER, A 4 (2012) 6530.
[45] R. A. Ismail, G. M. Sulaiman, S. A. Abdulrahman, T. R.
Marzoog, Solvothermal synthesis of Au@Fe3O4
nanoparticles for antibacterial applications, Mater.
Sci. Eng., C, 53 (2015) 286–297.
[46] Li N. Chen, J. Shi, Y.-P. Anal. Magnetic polyethyleneimine
functionalized reduced graphene oxide as a novel
magnetic solid-phase extraction adsorbent for the
determination of polar acidic herbicides in rice, Chim.
Acta, 949 (2017) 23–34.
[47] Y. Yan, C. Zhang, W. Gu, C. Ding, X. Li, Y. Xian, Facile
Synthesis of Water-Soluble WS2 Quantum Dots for
Turn-On Fluorescent Measurement of Lipoic Acid, J.
Phys. Chem C, A 120 (2016) 12170.
[48] A. Bayat, E. Saievar-Iranizad, Synthesis of blue
photoluminescent WS2 quantum dots via ultrasonic
cavitation, J. Lumin, A 185 (2017) 236.
[49] G. Frey, S. Elani, M. Homyonfer, Y. Feldman, R. Tenne,
Optical-absorption spectra of inorganic fullerenelike
MS2 (M=Mo,W), Phys. Rev, A 57 (1998) 6666.
[50] K. He, N. Kumar, L. Zhao, Z. Wang, K. Mak, H. Zhao, J.
Shan, Tightly Bound Excitons in MonolayerWSe2,
PHYS REV LETT, A 113 (2014) 026803.
[51] S. Xu, D. Li, P. Wu, One-Pot, Facile, and Versatile
Synthesis of Monolayer MoS2/WS2 Quantum Dots as
Bioimaging Probes and Efficient Electrocatalysts for
Hydrogen Evolution Reaction, Adv. Funct. Mater, A 25
(2015) 1127.
[52] H. Mishra, S. Umrao, J. Singh, R. Srivastava, R. Ali, A.
Misra, A. Srivastava, pH Dependent Optical Switching
and Fluorescence Modulation of Molybdenum Sulfide
Quantum Dots, Advanced Optical Materials 5, 9 (2017)
1601021.
[53] F. Laatar, M. Hassen, C. Amri, F. Laatar, A. Smida, H.
Ezzaouia, Fabrication of CdSe nanocrystals using
porous anodic alumina and their optical properties, J.
Lumin, A 178 (2016) 13.
[54] N. Ben Brahim, M. Poggi, N. Haj Mohamed, R. Ben
Chaâbane, M. Haouari, M. Negrerie, H. Ben Ouada,
Synthesis, characterization and spectral temperaturedependence of thioglycerol-CdSe nanocrystals, J.
Lumin, A 177 (2016) 402.
[55] Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H. Liu, From
UV to Near-Infrared, WS2 Nanosheet: A Novel
Photocatalyst for Full Solar Light Spectrum
Photodegradation, Adv. Mater, A 27 (2015) 363.
[56] S. Notley, High yield production of photoluminescent
tungsten disulphide nanoparticles, J. Colloid Interface
Sci, A 15 (2013) 160.
[57] H. Jiang, Electronic Band Structures of Molybdenum
and Tungsten Dichalcogenides by the GW Approach, J.
Phys. Chem, A 116 (2012) 7664.
[58] D. Feng, Z. Xu, T. Jia, X. Li, S. Gong, Quantum size effects
on exciton states in indirect-gap quantum dots, Phys.
Rev B, A 68 (2003) 035334.
[59] X. Duan, Q. Liu, G. Wang, X. Su, WS2 quantum dots as a
sensitive fluorescence probe for the detection of
glucose, MICROCHIM ACTA, A 207 (2019) 491.
[60] Lin, T. N., S. R. M. Santiago, S. P. Caigas, C. T. Yuan, T. Y.
Lin, J. L. Shen, and Y. F. Chen. "Many-body effects in
doped WS2 monolayer quantum disks at room
temperature." npj 2D Materials and Applications 3, 1
(2019) 1-6.
[61] Y. S. Liu, X. M. Hu, T. Wang, and D. M. Liu, “Reduced
Binding Energy and Layer-Dependent Exciton
Dynamics in Monolayer and Multilayer WS2,” ACS
Nano 13(12) (2019) 14416–14425.
[62] A. Hichri, I. B. Amara, S. Ayari, and S. Jaziri, “Dielectric
environment and/or random disorder effects on
free,charged and localized excitonic states in
monolayer WS2,” J. Phys.: Condens. Matter 29(43)
(2017) 435305.
[63] Xu, Xuejun, Lihui Li, Mingming Yang, Qinglin Guo, Ying
Wang, Xiaoli Li, Xiujuan Zhuang, and Baolai Liang.
"Localized state effect and exciton dynamics for
monolayer WS2." Optics Express 29, 4 (2021) 5856-
5866.
[64] H. Wang, C. Zhang, W. Chan, S. Tiwari, F. Rana, Ultrafast
response of monolayer molybdenum disulfide
photodetectors, A 6 (2015) 339.
[65] Ma, Churong, Jiahao Yan, Yingcong Huang, and Guowei
Yang. Photoluminescence manipulation of WS2 flakes
by an individual Si nanoparticle, Materials Horizons 6,
1 (2019) 97-106.
[66] M. Mahdavi, S. Kimiagar, and F. Abrinaei, Effect of
Laser Energy on the Tribology Properties of MoS2
Flakes, Tribology in Industry 42(2) (2020).
[67] Wu, Na, Ningning Hu, Gongbo Zhou, and Jinhe Wu.
"Tribological properties of lubricating oil with
micro/nano-scale WS2 particles." Journal of
Experimental Nanoscience 13, 1 (2018) 27-38.
[68] Zhang, Xianghua, Hongxiang Xu, Jiangtao Wang, Xia Ye,
Weining Lei, Maoquan Xue, Hua Tang, and
Changsheng Li. "Synthesis of ultrathin WS2
nanosheets and their tribological properties as
lubricant additives." Nanoscale research letters 11, 1
(2016) 1-9.
[69] Jiang, Zhengquan, Yujuan Zhang, Guangbin Yang,
Kunpeng Yang, Shengmao Zhang, Laigui Yu, and
Pingyu Zhang. "Tribological properties of oleylaminemodified ultrathin WS2 nanosheets as the additive in
polyalpha olefin over a wide temperature range."
Tribology Letters 61, 24 (2016) 3.
[70] A. Bos, Wear in the four-ball apparatus: relationship
between the displacement of the upper ball and the
diameter of the wear scars on the lower balls, Wear, A
41 (1977) 191.
[71] T.B. Lane, the flash temperature parameter: A criterion
for assessing EP performance in the four-ball machine,
J JPN PETROL INST, A 4 (1961) 254.