Magnetic properties of Co0.9Cd0.1Fe1.9X0.1O4 (X = Cr, Yb) nanoparticles prepared by hydrothermal method

Document Type : Original Article

Authors

Department of Physics, Payam Noor University, Iran

Abstract

The present study investigated the cadmium-cobalt ferrite nanoparticles doped with chromium and ytterbium ions synthesized using the hydrothermal method. We analysed the samples by X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and vibrating Sample Magnetometer devices (VSM). XRD confirmed the formation of an almost pure spinel structure. FESEM-obtained micrographs showed spherical shapes for nanoparticles and by using ImageJ software, an average particle size of about 40 nm was obtained. The saturation magnetization, the remnant magnetization, and the coercivity field were estimated using the hysteresis loop of the samples. The maximum coercivity field (815 Oe )was obtained in the sample doped with ytterbium. This could be due to enhancing the spin-orbit coupling and magnetocrystalline anisotropy constant of the cadmium-cobalt ferrite sample with ytterbium doping. The saturation magnetization decreased with the doping of both ions due to the lower magnetic moment of the doped ions compared to the Fe ion.

Keywords

Main Subjects


[1] P.P. Goswam, H.A. Choudhury, S. Chakma, V.S. Moholkar, 
Sonochemical Synthesis of Cobalt Ferrite 
Nanoparticles, International Journal of Chemical 
Engineering, 2013 (2013) 934234.
[2] N. Somaiah, T.V. Jayaraman, P.A. Joy, D. Das, Magnetic 
and magnetoelastic properties of Zn doped cobaltferrites CoFe2−xZnxO4(x = 0, 0.1,0.2, and 0.3), J. 
Magnetism and Magnetic Materials, 324-14 (2012), 
2286-2291.
[3] S. Singhal, T. Namgyal, S. Bansal, K. Chandra, Effect of 
Zn Substitution on the Magnetic Properties of Cobalt 
Ferrite Nano Particles Prepared Via Sol-Gel Route, J. 
Electromagnetic Analysis and Applications, (2010), 2, 
376-381.
[4] R. Bhowmik, R. Ranganathan, B. Ghosh , S. Kumar, S. 
Chattopadhyay, Magnetic ordering and electrical 
resistivity in Co0.2Zn0.8Fe2O4 spinel oxide, J. Alloys and 
Compounds, 456 (2008) 348-352. 
[5] A. Daigle, J. Modest, A. L. Geiler, S. Gillette, Y. Chen, M. 
Geiler, B. Hu, S. Kim, K. Stopher, V. G. Harris, Structure, 
morphology and magnetic properties of Mg(x)Zn(1− 
x)Fe2O4 ferrites prepared by polyol and aqueous coprecipitation methods: a low-toxicity alternative to 
Ni(x)Zn(1− x)Fe2O4 ferrites, J. Nanotechnology, (2011), 
22(30), 305708.
[6] C. Upadhyay, D. Mishra, H. Verma, S. Anand, R. Das, 
Effect of preparation conditions on formation of 
nanophase Ni–Zn ferrites through hydrothermal 
technique, J. Magn. Magn. Mater, 260 (2003) 188-194.
[7] P. Coppola, F.G. da Silva, G. Gomide, F.L.O. Paula, A.F.C. 
Campos, R. Perzynski, C. Kern, J. Depeyrot, R. Aquino, 
Hydrothermal synthesis of mixed zinc–cobalt ferrite 
nanoparticles: structural and magnetic properties, J. 
Nanoparticle Research, 18 (2016) 138.
[8] F. Saffari, P. Kameli, M. Rahimi, H. Ahmadvand, H. 
Salamati, Effects of Co-substitution on the structural 
and magnetic properties of NiCoxFe2−xO4 ferrite 
nanoparticles, J. Ceramics International, 41 (2015) 
7352-7358. 
[9] M. Shelar, P. Jadhav, S. Chougule, M. Mallapur, B. 
Chougule, Structural and electrical properties of 
nickel cadmium ferrites prepared through selfpropagating auto combustion method, J. Alloys and 
Compounds, 476 (2009) 760-764.
[10] M. Rahimi, M. Eshraghi, P. Kameli, Structural and 
magnetic characterizations of Cd substituted nickel 
ferrite nanoparticles. Ceramics international, 40
(2014) 15569-15575.
[11] S.P. Dalawai, T.J. Shinde, A.B. Gadkarai, P.N. Vasambekar, 
Structural properties of Cd–Co ferrites, J. Indian 
Academy of Sciences, 36 (2013) 919-922 .
[12] G. Tang, D. Ji, Y. Yao, S. Liu, Z. Li ,W. Qi, et al., Quantummechanical method for estimating ion distributions in 
spinel ferrites, J. Appl. Phys. Lett, 98(2011), 072511.
[13] M. Kaur, S. Rana, P.S. Tarsikka, Comparative analysis of 
cadmium doped magnesium ferrite Mg1-xCdxFe2O4 (x= 
0.0, 0.2, 0.4, 0.6) nanoparticles, J. Ceram. Int. 38 (2012) 
4319-4323.
[14] S.P. Jadhav, B.G. Toksha, K.M. Jadhav, N.D. Shinde, 
Effect of cadmium substitution on structural and 
magnetic properties of nanosized nickel ferrite, Chin. 
J. Chem. Phys. 23 (2010) 459.
[15] M. Karanjkar, N. Tarwal, A. Vaigankar, P. Patil, Structural, 
Mössbauer and electrical properties of nickel 
cadmium ferrites, J. Ceram. Inter. 39 (2013) 1757-
1764.
[16] Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q.
Qiu, D.C. Zeng, L.S. Wen, First-principles investigations 
of Zn (Cd) doping effects on the electronic structure 
and magnetic properties of CoFe2O4, Journal of 
Applied Physics, 109 (2011) 07A502.
[17] S.S. Jadhav, S.E. Shirsath, S.M. Patange, K. Jadhav, Effect 
of Zn substitution on magnetic properties of 
nanocrystalline cobalt ferrite, J. Appl. Phys. 108 
(2010) 093920-093926.
[18] A. Gadkari, T. Shinde, P. Vasambekar, Structural and 
magnetic properties of nanocrystalline Mg–Cd ferrites 
prepared by oxalate coprecipitation method, J. Mater. 
Sci.:Mater. Electron. 21 (2010) 96-103.
[19] A.M. Abdeen, O.M. Hemeda, E.E. Assem, M.M. El-Sehly, 
Structural, electrical and transport phenomena of Co 
ferrite substituted by Cd, J. Magnetism and Magnetic 
Materials 238 (2002) 75-83.
[20] H. Ghorbani, M. Eshraghi, Investigation of chromium 
doping effect on the structural and magnetic 
properties of MnFe2-xCrxO4 ferrite nanoparticles, J.
Research on Many-body Systems, 6 (2016) 1-9.
[21] G. Goya, T. Berquo, F. Fonseca, M. Morales, Static and 
dynamic magnetic properties of spherical magnetite 
nanoparticles, J. Appl. Phys. 94 (2003) 3520.
[22] H. Kaur, A. Singh, V. Kumar, D.S. Ahlawat, Structural, 
thermal and magnetic investigations of cobalt ferrite 
doped with Zn2+ and Cd2+ synthesized by auto 
combustion method, J. Magnetism and Magnetic 
Materials 474 (2019) 505–511 .
[23] K.P. Remya, S. Amirthapandian, M.M. Raja, C. Viswanathan, 
N. Ponpandian, Effect of Yb substitution on room 
temperature magnetic and dielectric properties of 
bismuth ferrite nanoparticles, J. Appl. Phys. 120 
(2016), 134304.
[24] K.L. Routray, S. Saha, D. Behera, Rare-earth (La+3) 
substitution induced changes in the structural, 
dielectric and magnetic properties of nanoCoFe2O4For high-frequency and magneto-recording 
devices, J. Applied Physics A, (2019) 125:328.
[25] M. A. Almessiere, Y. Slimani, A. D. Korkmaz, S. Guner, 
M. Sertkol, S. E. Shirsath, A. Baykal, Structural, optical 
and magnetic properties of Tm3+ substituted cobalt 
spinel ferrites synthesized via sonochemical 
approach, J. Ultrasonics sonochemistry, (2019), 54, 1-
10. 
[26] G. Bulai, L. Diamandescu, I. Dumitru, S. Gurlui, M. 
Feder, O.F. Caltun, Effect of rare earth substitution in
cobalt ferrite bulk materials, J. Magn. Magn. Materials 
390(2015), 123–131.
[27] W. Zhang, X. Zuo, D. Zhang, C. Wu, S. R. P. Silva, Cr3+
substituted spinel ferrite nanoparticles with high 
coercivity, J. Nanotechnology, 27 (2016) 245707. 
[28] H. Khedri, A. Gholizadeh, Experimental comparison of 
structural, magnetic and elastic properties of 
M0.3Cu0.2Zn0.5Fe2O4 (M = Cu, Mn, Fe, Co, Ni, Mg) 
nanoparticles, J.Applied Physics A (2019) 125:709.
[29] S.J. Olusegun, E.T.F. Freitas, L.R.S. Lara, H.O. Stumpf, 
N.D.S. Mohallem, Effect of drying process and 
calcination on the structural and magnetic properties 
of cobalt ferrite, J. Ceramics International 45 (2019) 
8734–8743.
[30] A. Manohar, D.D. Geleta, C. Krishnamoorthi, J. Lee, 
Synthesis, characterization and magnetic 
hyperthermia properties of nearly monodisperse 
CoFe2O4 nanoparticles, J. Ceramics International , 46 
(2020) 28035-28041.
[31] N. Shamgani, A. Gholizadeh, Structural, magnetic and 
elastic properties of Mn0.3−xMgxCu0.2Zn0.5Fe3O4
nanoparticles, J.Ceramics International 45 (2019) 
239–246.
[32] A. Gholizadeh, A comparative study of physical properties 
in Fe3O4 nanoparticles prepared by coprecipitation and 
citrate methods.Journal of the american ceramic society,100
(2017) 3577-3588.
[33] S. Karimi , P. Kameli , H. Ahmadvand , H. Salamati, 
Effects of Zn-Cr-substitution on the structural and 
magnetic properties of Ni1-xZnxFe2-xCrxO4 ferrites, J. 
Ceramics International 42 (2016) 16948–16955.
[34] R. Topkaya , A. Baykal , A. Demir , Yafet–Kittel-type 
magnetic order in Zn-substituted cobaltferrite 
nanoparticles with uniaxial anisotropy, J.Nanopart 
Res (2013) 15:1359.
[35] G. Alvarez, H. Montiel, J.F. Barron, M.P. Gutierrez , R. 
Zamorano, Yafet–Kittel-type magnetic orderingin 
Ni0.35Zn0.65Fe2O4 ferrite detected by magnetosensitive 
microwave absorption measurements, J. Magnetism 
and Magnetic Materials , 322 (2010) 348–352 .
[36] Y. Yafet, C. Kittel, Antiferromagnetic arrangements in 
ferrites, J. Phys. Rev. 87 (1952) 290.
[37] C. Choodamani, G.P. Nagabhushana, S. Ashoka, B. DarukaPrasad, B. Rudraswamy, G.T. Chandrappa, Structural 
and magnetic studies of Mg1−xZnxFe2O4 nanoparticles 
prepared by a solution combustion method, J. Alloys 
and Compounds, 578(2013) 103-109.
[38] M. Beyranvand, A. Gholizadeh, Structural, magnetic, 
elastic, and dielectric properties of 
Mn0.3−xCdxCu0.2Zn0.5Fe2O4 nanoparticles. Journal of 
Materials Science: Materials in Electronics, 31 (2020) 
5124-5140. 
[39] M. Yousaf, M.N. Akhtar, B. Wang, A. Noor, Preparations, 
optical, structural, conductive and magnetic 
evaluations of RE's (Pr, Y, Gd, Ho, Yb) doped spinel 
nanoferrites, J. Ceramics International 46-4 (2020), 
4280-4288.
[40] S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, 
H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M. R. 
Ganjali, M. Rahimi-Nasrabad, Assessing the magnetic, 
cytotoxic and photocatalytic influence of 
incorporating Yb3+ or Pr3+ ions in cobalt–nickel ferrite, 
J. Materials Science: Materials in Electronics 
30(2019), 6902–6909.
[41] M. Yehia, A. Hashhash, Structural and magnetic study 
of Sm doped NiFe2O4Nanoparticles, J. Materials 
Science: Materials in Electronics, (2019), 10854-019-
00988-9.
[42] V. Turchenko, V.G. Kostishin, S. Trukhanov, F. Damay , 
M.B.B. Bozzo, I. Fina, V.V. Burkhovetsky, S. Polosan, 
M.V. Zdorovets, A.L. Kozlovskiy, K.A. Astapovich, A. 
Trukhanov, Structural features, magnetic and 
ferroelectric properties of SrFe10.8In1.2O19 compound, 
J. Materials Research Bulletin 138(2021) 111236.
[43] D.E. Grady, Origin of the Linear Term in the Expression 
for the Approach to Saturation in Ferromagnetic 
Materials, J. Phys. Rev. B, 4 (1971) 3982.
[44] A. Arrott, Dzialoshinski‐Moriya Interactions About 
Defects in Antiferromagnetic and Ferromagnetic 
Materials, J. Applied Physics, 34 (1963) 1108.
[45] A. Aharoni, One-Dimensional Theory of the Parasitic 
Paramagnetism Term in the Approach to Saturation, J. 
Phys. Rev. 132 (1963)105.
[46] N. Modaresi, R. Afzalzadeh, B. Aslibeiki, P. Kameli, 
Competition between the Impact of Cation
Distribution and Crystallite Size on Properties of 
MnxFe3-xO4 Nanoparticles Synthesized at Room 
Temperature, J. ceramics Int, 43(2017) 15381-15391.
[47] H. Ghorbani, M. Eshraghi, A. S. Dodaran, P. Kameli, S. 
Protasowicki, C. Johnson, D. Vashaee, Effect of Yb 
doping on the structural and magnetic properties of 
cobalt ferrite nanoparticles, J. Materials Research 
Bulletin, 147(2022) 111642. 
[48] B. Yalcin, S. Ozcelik, K. Icin, K.Senturk, B. Ozcelik, L. 
Arda, Structural, optical, magnetic, photocatalytic 
activity and related biological effects of CoFe2O4
ferrite nanoparticles, J. Mater Sci: Mater Electron 32 
(2021) 13068–13080.
[49] H. Zhang, D. Zeng, Z. Liu, The law of approach to 
saturation in ferromagnets originating from the 
magnetocrystalline anisotropy, J. Magn. Magn. 
Materials 322 (2010) 2375–2380.
[50] B.D. Cullity, C.D. Graham, Introduction to Magnetic 
Materials, John Wiley & Sons, (2011)