Effect of Tetraethyl-Orthosilicate, 3-Aminopropyl‌triethoxysilane and Polyvinylpyrrolidone for synthesis of SiO2@Ag core-shell nanoparticles prepared by chemical reduction method

Document Type : Original Article


School of Physics, Damghan University, Damghan, Iran


In this research, silica (SiO2) and SiO2@Ag core-shell nanoparticles were synthesized by the co-precipitation method in the presence of ammonia as a reducing agent. First, the effect of different concentrations of tetraethyl orthosilicate (TEOS) as a precursor on the structural and optical properties of silica nanoparticles (SiO2) was investigated. Then, using this optimized concentration of TEOS, silica nanoparticles with silver shell were prepared by two methods: (a) in the absence and (b) in presence of APTES (3-Aminopropyl­triethoxysilane). The properties of SiO2@Ag core-shell nanoparticles prepared by two methods were compared and the best method was determined. For the synthesis of Ag nanoparticles, silver nitrate (AgNO3) and sodium borohydride (NaBH4) as reducing agents were used. To functionalize the surface of silica nanoparticles, 3-Aminopropyl-triethoxysilane (APTES) was added to the AgNO3 solution with polyvinyl-pyrrolidone (PVP) as a dispersant. The structural properties of silica and silica-silver core-shell nanoparticles were investigated by XRD and TEM. The average size of a silver single crystal in the core shells prepared by the two methods is about 25 nm and 14 nm, respectively. The optical absorption and bandgap were calculated for silica and SiO2@Ag core-shell nanoparticles. The results indicated that with increasing the concentration of TEOS precursor, the optical absorption of silica nanoparticles increased and their optical band gap reduced from 4.22 eV to 3.55 eV.



Main Subjects

[1] L.M. Liz-Marzan, M.A. Correa-Duarte, I. Pastoriza-Santos, P. Mulvaney, T. Ung, M. Giersig, N.A. Kotov, In Hand Book of Surfaces and Interfaces of Materials (ed. Nalwa, H. S.), Nanostructured Materials, Micelles and Colloids, Ch. 5, 3 (2001) 189.
[2] R. Davies, G.A. Schurr, P. Meenam, R.D. Nelson, H.E. Bergna, C. A. S. Brevett, R. H. Goldbaum, Engineered particle surfaces. Adv. Mater.10 (1998) 1264-1270.
[3] A. C. Templeton, W. P. Wuelfing, R. W. Murray, Acc. Chem. Res. 33 (2000) 27-36. [4] F. Caruso, Nanoengineering of particle surfaces, Adv. Mater. 13 (2001) 11-22. [5] Y. Xia, B. Gates, Y. Yin, Y. Lu, Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12 (2000) 693-713.
[6] S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N. Halas, Nanoengineering of optical resonances, J. Chem. Phys. Lett. 288 (1998) 243-247. [7] Z.J. Jiang, C.J. Liu, Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere, Phys. Chem. B. 107 (2003) 12411-12415.
[8] D.I. Gittins, A.S. Susha R. Wannemacher, Dense Nanoparticulate Thin Films via Gold Nanoparticle Self‐Assembly, Adv. Mater. 14 (2002) 508-512.
[9] S.J. Oldenburg, J. B. Jackson, S. L. Westcott, N.J. Halas, Infrared extinction properties of gold nanoshells, Appl. Phys. Lett. 75 (1999) 2897-2899.
[10] T. Pham, J.B. Jackson, N.J. Halas, T.R. Lee, Preparation and characterization of gold nanoshells coated with self-assembled monolayers, Langmuir, 18 (2002) 4915-4920.
[11] L.R. Hirsch, A.M. Gobin, A.R. Lowery, F. Tam, R.A. Drezek, N. Halas, J.L. West, Metal nanoshells, Annals of Biomedical Engineering, 34 (2006) 15-22.
[12] S. Kalele, S.W. Gosavi, J.S. Urban, K. Kulkarni, Nanoshell particles: synthesis, properties and applications, Current Science, 91 (2006) 1038-1052.
[13] K. Xu, J. Wang, X. Kang, Chen, J. Mater. Lett. 63 (2009) 31. [14] S. Tang, Y. Tang, S. Zhu, H. Lu, X. Meng, Synthesis and characterization of silica–silver core–shell composite particles with uniform thin silver layers. J. Solid State Chem. 180 (2007) 2871-2876.
[15] M. Zhu, G. Qian, Z. Hong, Z. Wang, X. Fan, M. Wang, Preparation and characterization of silica–silver core-shell structural submicrometer spheres, J. Phys. Chem. Solids. 66 (2005) 748-752.
[16] G. Ding, G. Qian, Z. Wang, J. Qiu, M. Wang, Fabrication and properties of multilayer-coated core–shell structural monodisperse spheres and close-packed structure, Mater. Lett. 60 (2006) 3335-3338.
[17] M. Zhu, G. Qian, G. Ding, Z. Wang, M. Wang, Plasma resonance of silver nanoparticles deposited on the surface of submicron silica spheres, Mater. Chem. Phys. 96 (2006) 489-493.
[18] J.B. Jackson, N.J. Halas, Silver nanoshells: variations in morphologies and optical properties, J. Phys. Chem. B. 105 (2001) 2743-2746. [19] A. Warshawsky, D.A. Upson, Zerovalent metal polymer composites. I. Metallized beads, J. Polym. Sci. Part A: Polym. Chem. 27 (1989) 2963-2994.
[20] S. Tang, Y. Tang, F. Gao, Z. Liu, X. Meng, Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres, Nanotechnology, 18 (2007) 295607.
[21] L. Abbasi, K. Hedayati, D. Ghanbari, Magnetic properties and kinetic roughening study of prepared polyaniline: lead ferrite, cobalt ferrite and nickel ferrite nanocomposites electrodeposited thin films, J. Mater. Sci: Mater Electron 32 (2021)14477–14493.
[22] Y. Han, J. Jiang, S.S. Lee, J.Y. Ying, Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles, Langmuir, 24 (2008) 5842-5848.
[23] X. Ye, Y. Zhou, J. Chen, Y. Sun, Deposition of silver nanoparticles on silica spheres via ultrasound irradiation. Appl. Surf. Sci. 253 (2007) 6264-6267.
[24] H. Hofmeistera, P.T. Micleaa, M. Steena, W. Morkeb, H. Drevsc, Structural characteristics of oxide nanosphere supported metal nanoparticles. Top. Catal. 46 (2007) 11-21.
[25] M. Ocana, W.P. Hsu, E. Matijevic, Preparation and properties of uniform-coated colloidal particles. 6. Titania on zinc oxide. Langmuir, 7 (1991) 2911-2916.
[26] S.L. Westcott, S.J. Oldenburg, T.R. Lee, N.J. Halas, Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces, Langmuir, 14 (1998) 5396-5401.
[27] R.D. Badly, W.T. Ford, F.J. MacEnroe, R.A. Assink, Surface modification of colloidal silica, Langmuir,6 (1990) 792-801. [28] A. Van Blaaderen, A. Vrij, Synthesis and characterization of monodisperse colloidal organo-silica spheres, ournal of Colloid and Interface Science, 156 (1993) 1-18.
[29] M. Goodarzi, S. Joukar, D. Ghanbari, K. Hedayati, CaFe2O4–ZnO magnetic nanostructures: photo-degradation of toxic azo-dyes under UV irradiation.J Mater Sci: Mater Electron 28 (2017) 12823–12838. [30] Z. Ebrahimi, K. Hedayati, & Ghanbari. D, Preparation of hard magnetic BaFe12O19–TiO2 nanocomposites: applicable for photo-degradation of toxic pollutants. J Mater Sci: Mater Electron, 28 (2017) 13956–13969.
[31] K. Hedayati, S. Azarakhsh, J. Saffari, D. Ghanbari, Photo catalyst CoFe2O4–CdS nanocomposites for degradation of toxic dyes: investigation of coercivity and magnetization.J Mater Sci: Mater Electron 27 (2016) 8758–8770.
[32] H.B. Ahmed, M.A. Attia, F.M. El-Dars, H.E. Emam, Hydroxyethyl cellulose for spontaneous synthesis of antipathogenic nanostructures:(Ag & Au) nanoparticles versus Ag-Au nano-alloy. Int. J. Biol. Macromol. 128 (2019) 214-229. [33] H.B. Ahmed, H.E. Emam, Synergistic catalysis of monometallic (Ag, Au, Pd) and bimetallic (AgAu, AuPd) versus Trimetallic (Ag-Au-Pd) nanostructures effloresced via analogical techniques. J. Mol. Liq. 287 (2019) 110975.
[34] Q. Han, C. Zhang,W. Gao, Z. Han, T. Liu, C. Li, Z.Wang, E. He, H. Zheng, Ag-Au alloy nanoparticles: Synthesis and in situ monitoring SERS of plasmonic catalysis. Sensors Actuators, B Chem. 231 (2016) 609-614.
[35] K. Daware, M. Kasture, Kalubarme, R., Shinde, R., Patil, K., Suzuki, N., Terashima, C., Gosavi, S. and Fujishima, A., Detection of toxic metal ions Pb2+ in water using SiO2@ Au core-shell nanostructures: A simple technique for water quality monitoring, Chemical Physics Letters, Vol. 732 (2019) 136635.
[36] A.R. Radnaeva, S.V. Kalashnikov, Nomoev, A.V. Nature of diffraction fringes originating in the core of core–shell nanoparticle Cu/SiO2 and formation mechanism of the structures. Chemical Physics Letters, 651 (2016) 274–277. [37] K. Manivannan, C.C. Cheng, R., Anbazhagan, Tsai, H.C. and Chen, J.K., Fabrication of silver seeds and nanoparticle on core-shell Ag@ SiO2 nanohybrids for combined photothermal therapy and bioimaging.Journal of Colloid and Interface Science, 537 (2019) 604–614.
[38] A. Sakthisabarimoorthi Dhas, S.M.B. and Jose, M. Fabrication and nonlinear optical investigations of SiO2@Ag core-shell nanoparticles, Materials Science in Semiconductor Processing, 71 (2017) 69–75.