[1] R. Camley, D. Mills, Collective excitations of semi-infinite
superlattice structures: Surface plasmons, bulk
plasmons, and the electron-energy-loss spectrum.
Phys. Rev B. 29 (1984) 1695.
[2] P. Nozieres, D. Pines, Correlation energy of a free
electron gas. Phys. Rev. 111 (1958) 442.
[3] D. Pines, A collective description of electron
interactions: IV. Electron interaction in metals. Phys.
Rev. 92 (1953) 626.
[4] M.P. Marder, Condensed matter physics, John Wiley & Sons, 2010.
[5] S.A. Maier, Plasmonics: fundamentals and applications, Springer Science & Business Media, 2007.
[6] V. Myroshnychenko et al. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37 (2008) 1792-1805.
[7] U. Kreibig, M. Vollmer, Optical properties of metal clusters, Springer Science & Business Media, 2013.
[8] P. Pattnaik, Surface plasmon resonance, Appl. Biochem. Biotechnol. 126 (2005) 79-92.
[9] B. Liedberg, C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing, Sens. Actuators. 4 (1983) 299-304.
[10] G. Xu, et al., Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films, Appl. Phys. Lett. 82 (2003) 3811-3813.
[11] C. Noguez, Surface plasmons on metal nanoparticles: the influence of shape and physical environment, J. Phys. Chem. C. 111 (2007) 3806-3819.
[12] K.S. Lee, M.A. El-Sayed, Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition, J. Phys. Chem. B. 110 (2006) 19220-19225.
[13] S. Link, M.A. El-Sayed, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B. 103 (1999) 4212-4217.
[14] R.F. Oulton, et al., A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nat. Photonics. 2 (2008) 496-500.
[15] E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions, science. 311 (2006) 189-193.
[16] H. A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9 (2010) 205-213.
[17] J.A, Schuller, et al., Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9 (2010) 193-204.
[18] S. Kawata, Plasmonics: future outlook, Jpn J Appl Phys. 52 (2012) 010001.
[19] S. Kawata, Y. Inouye, P. Verma, Plasmonics for near-field nano-imaging and superlensing, Nat. Photonics. 3(2009) 388-394.
[20] X. Huang, et al., Plasmonic photothermal therapy (PPTT) using gold nanoparticles, J Lasers Med Sci. 23 (2008) 217.
[21] M. Vieweger, Photothermal imaging and measurement of protein shell stoichiometry of single HIV-1 Gag virus-like nanoparticles, ACS nano, 5 (2011) 7324.
[22] V. Zharov, R. Letfullin, E. Galitovskaya, Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters, J Phys D Appl Phys. 38 (2005) 2571.
[23] R.R. Letfullin, C.E. Rice, T.F. George, Modeling photothermal heating and ablation of biological hard tissues by short and ultrashort laser pulses, INT. J. THEOR. PHYS., Group Theory, and Nonlinear Optics. 15 (2011) 11.
[24] R.S.Norman, et al., Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods, Nano Lett. 8 (2008) 302-306.
[25] J. Li, A. Salandrino, N. Engheta, Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain, Phys. Rev. B. 76 (2007) 245403.
[26] F. Neubrech, et al., Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 101 (2008)157403.
[27] L. Novotny, N. Van Hulst, Antennas for light, Nat. Photonics. 5 (2011) 83-90.
[28] J. Saxler, et al., Time-domain measurements of surface plasmon polaritons in the terahertz frequency range, Phys. Rev. B. 69 (2004) 155427.
[29] D. Martín-Cano, et al., Plasmons for subwavelength terahertz circuitry, Opt. Express. 18 (2010) 754-764.
[30] M. Vaezzadeh, M. Saeidi, Paralysation of HIV Without Impairing Other Cells, Curr. Signal Transduct. Ther. 4 (2009) 196-200.
[31] P. Nelson, Biological physics, New York, WH Freeman, 2004.
[32] J.M. Jacque, K. Triques, M. Stevenson, Modulation of HIV-1 replication by RNA interference, Nat. 418 (2002). 435-438.
[33] S.G. Deeks, et al., HIV RNA and CD4 cell count response to protease inhibitor therapy in an urban AIDS clinic: response to both initial and salvage therapy, Aids. 13 (1999) F35-F43.
[34] R.M. Selik, S.Y. Chu, J.W. Buehler, HIV infection as leading cause of death among young adults in US cities and states, JAMA. 269 (1993) 2991-2994.
[35] L. Alkema, et al., Global, regional, and national levels and trends in maternal mortality between 1990 and 2015, with scenario-based projections to 2030: a systematic analysis by the UN Maternal Mortality Estimation Inter-Agency Group, Lancet. 387 (2016) 462-474.
[36] R. Wyatt, J. Sodroski, The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens, Science. 280 (1998) 1884-1888.
[37] D.C. Chan,P.S. Kim, HIV entry and its inhibition, Cell. 93 (1998) 681-684.
[38] J.B. Johnson, Thermal agitation of electricity in conductors, Phys. Rev. 32 (1928) 97.
[39] L.B. Kish, End of Moore's law: thermal (noise) death of integration in micro and nano electronics, Phys. Lett. A. 305 (2002) 144-149.
[40] D.M. York, T.A. Darden, L.G. Pedersen, The effect of longārange electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys. 99 (1993) 8345-8348.
[41] J. Y. Walz, A. Sharma, Effect of long range interactions on the depletion force between colloidal particles, J. Colloid Interface Sci. 168 (1994) 485-496.
[42] T. González, O.M. Bulashenko, J. Mateos, D. Pardo, L. Reggiani, Effect of long-range Coulomb interaction on shot-noise suppression in ballistic transport, Physical Review B, 56 (1997) 6424.