The effect of calcination temperature on the X-ray peak broadening of t-CuFe2O4

Document Type : Original Article


School of Physics, Damghan University, Damghan, Iran


CuFe2O4 ferrite was synthesized by citrate precursor and then calcined at 800, 900, and 1000 °C. Structural properties showed that the X-ray diffraction patterns of the samples could be easily indexed to tetragonal CuFe2O4 ferrite with the spatial group the I 41/AMD. As the calcination temperature increased, the larger Cu2+ ion at the tetragonal site substituted the smaller Fe3+ ion at the octahedral site. The half-width of X-ray diffraction peaks can be affected by several factors such as instrumentation, crystallite size, and lattice microstrain broadening. The results of crystallite size and Microstrain estimated by different methods for the samples show that the Size-strain Plot method is more accurate, the value of R2 is close to 1 and all data points touch the fitting line better than other methods. The results showed that the increase in crystal size with calcination temperature could be mainly attributed to the increase of stretching microstrain.


Main Subjects

[1] Y. Slimani, M.A. Almessiere, A. Demir Korkmaz, S. Guner, 
H. Güngüneş, M. Sertkol, A. Manikandan, A. Yildiz, S. 
Akhtar, Sagar E. Shirsath, A. Baykal, Ni0.4Cu0.2Zn0.4TbxFe2-xO4
nanospinel ferrites: Ultrasonic synthesis and physical 
properties, Ultrason. Sonochem. 59 (2019) 104757.
[2] R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, 
M. Hajd´uchov´a, V. Enev, I. Kuˇritk, Z. Koˇz´akov´a, 
Cation Migration-Induced Crystal Phase 
Transformation in Copper Ferrite Nanoparticles and 
Their Magnetic Property, J. Supercond. Nov. Magn. 29 
(2016) 759–769.
[3] H. Hou, G. Xu, S. Tan, Y. Zhu, A facile sol-gel strategy for
the scalable synthesis of CuFe2O4 nanoparticles with 
enhanced infrared radiation property: Influence of the 
synthesis conditions, Infrared Phys. Technol. 85 
(2017) 261–265.
[4] R. Yogamalara, R. Srinivasan, A. Vinu, K. Ariga, A. C. 
Bose, X-ray peak broadening analysis in ZnO 
nanoparticles, Solid State Commun. 149 (2009) 1919-
[5] A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. 
Yousefi, X-ray analysis of ZnO nanoparticles by 
Williamson-Hall and size-strain plot methods, Solid 
State Sci. 13 (2011) 251-256. 
[6] H. Yang, J. Yan, Z. Lu, X. Cheng, Y. Tang, Photocatalytic 
activity evaluation of tetragonal CuFe2O4
nanoparticles for the H2 evolution under visible light 
irradiation, J. Alloys Compd. 476 (2009) 715–719. 
[7] J. Calvo-de la Rosa, M. Segarra Rubí, Influence of the 
Synthesis Route in Obtaining the Cubic or Tetragonal 
Copper Ferrite Phases, Inorganic Chemistry 59 (2020) 
[8] M.J. Iqbal, N. Yaqub, B. Sepiol, B. Ismail, A study of the 
influence of crystallite size on the electrical and 
magnetic properties of CuFe2O4, Mater. Res. Bull. 46 
(2011) 1837-1842. 
[9] D. Thapa, N. Kulkarni, S.N. Mishra, P.L. Paulose, P. 
Ayyub, Enhanced magnetization in cubic 
ferrimagnetic CuFe2O4 nanoparticles synthesized 
from a citrate precursor: the role of Fe2+, J. Phys. D: 
Appl. Phys. 43 (2010) 195004. 
[10] K. D. Rogers, P. Daniels, An X-ray diffraction study of 
the effects of heat treatment on bone mineral 
microstructure, Biomaterials 23 (2002) 2577.
[11] A. Gholizadeh, A comparative study of physical 
properties in Fe3O4 nanoparticles prepared by 
coprecipitation and citrate methods, J. Am. Ceram. 
Soc. 100 (2017) 3577–3588. 
[12] A. R. Stokes, A. J. C. Wilson, The diffraction of X rays by 
distorted crystal aggregates –I, Proc. Phys. Soc. 56 
(1944) 174. 
[13] G. K. Williamson, W. H. Hall, X-RAY LINE BROADENING 
Metall. 1 (1953) 22. 
[14] B. D. Cullity, Elements of X-ray Diffraction, AddisonWesley Publishing Company Inc., California, 1956. 
[15] M.A. Tagliente, M. Massaro, Strain-driven (002) 
preferred orientation of ZnO nanoparticles in ionimplanted silica, Nucl. Instrum. Methods. B 266 
(2008) 1055–1061. 
[16] N.C. Halder, N.C.J. Wagner, Separation of particle size 
and lattice strain in integral breadth measurements, 
Acta Crystallogr. 20 (1966) 312.
[17] J. E. Langford, International Conference Accuracy in 
Powder Diffraction II, National Institut of Standards 
and Technology, Special Publication, Gaithersburg, MD, 
USA, 846 (1992) 145.