[1] Y. Slimani, M.A. Almessiere, A. Demir Korkmaz, S. Guner, 
H. Güngüneş, M. Sertkol, A. Manikandan, A. Yildiz, S. 
Akhtar, Sagar E. Shirsath, A. Baykal, Ni0.4Cu0.2Zn0.4TbxFe2-xO4
nanospinel ferrites: Ultrasonic synthesis and physical 
properties, Ultrason. Sonochem. 59 (2019) 104757.
[2] R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, 
M. Hajd´uchov´a, V. Enev, I. Kuˇritk, Z. Koˇz´akov´a, 
Cation Migration-Induced Crystal Phase 
Transformation in Copper Ferrite Nanoparticles and 
Their Magnetic Property, J. Supercond. Nov. Magn. 29 
(2016) 759–769.
[3] H. Hou, G. Xu, S. Tan, Y. Zhu, A facile sol-gel strategy for
the scalable synthesis of CuFe2O4 nanoparticles with 
enhanced infrared radiation property: Influence of the 
synthesis conditions, Infrared Phys. Technol. 85 
(2017) 261–265.
[4] R. Yogamalara, R. Srinivasan, A. Vinu, K. Ariga, A. C. 
Bose, X-ray peak broadening analysis in ZnO 
nanoparticles, Solid State Commun. 149 (2009) 1919-
1923. 
[5] A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. 
Yousefi, X-ray analysis of ZnO nanoparticles by 
Williamson-Hall and size-strain plot methods, Solid 
State Sci. 13 (2011) 251-256. 
[6] H. Yang, J. Yan, Z. Lu, X. Cheng, Y. Tang, Photocatalytic 
activity evaluation of tetragonal CuFe2O4
nanoparticles for the H2 evolution under visible light 
irradiation, J. Alloys Compd. 476 (2009) 715–719. 
[7] J. Calvo-de la Rosa, M. Segarra Rubí, Influence of the 
Synthesis Route in Obtaining the Cubic or Tetragonal 
Copper Ferrite Phases, Inorganic Chemistry 59 (2020) 
8775-8788. 
[8] M.J. Iqbal, N. Yaqub, B. Sepiol, B. Ismail, A study of the 
influence of crystallite size on the electrical and 
magnetic properties of CuFe2O4, Mater. Res. Bull. 46 
(2011) 1837-1842. 
[9] D. Thapa, N. Kulkarni, S.N. Mishra, P.L. Paulose, P. 
Ayyub, Enhanced magnetization in cubic 
ferrimagnetic CuFe2O4 nanoparticles synthesized 
from a citrate precursor: the role of Fe2+, J. Phys. D: 
Appl. Phys. 43 (2010) 195004. 
[10] K. D. Rogers, P. Daniels, An X-ray diffraction study of 
the effects of heat treatment on bone mineral 
microstructure, Biomaterials 23 (2002) 2577.
[11] A. Gholizadeh, A comparative study of physical 
properties in Fe3O4 nanoparticles prepared by 
coprecipitation and citrate methods, J. Am. Ceram. 
Soc. 100 (2017) 3577–3588. 
[12] A. R. Stokes, A. J. C. Wilson, The diffraction of X rays by 
distorted crystal aggregates –I, Proc. Phys. Soc. 56 
(1944) 174. 
[13] G. K. Williamson, W. H. Hall, X-RAY LINE BROADENING 
FROM FILED ALUMINIUM AND WOLFRAM, Acta 
Metall. 1 (1953) 22. 
[14] B. D. Cullity, Elements of X-ray Diffraction, AddisonWesley Publishing Company Inc., California, 1956. 
[15] M.A. Tagliente, M. Massaro, Strain-driven (002) 
preferred orientation of ZnO nanoparticles in ionimplanted silica, Nucl. Instrum. Methods. B 266 
(2008) 1055–1061. 
[16] N.C. Halder, N.C.J. Wagner, Separation of particle size 
and lattice strain in integral breadth measurements, 
Acta Crystallogr. 20 (1966) 312.
[17] J. E. Langford, International Conference Accuracy in 
Powder Diffraction II, National Institut of Standards 
and Technology, Special Publication, Gaithersburg, MD, 
USA, 846 (1992) 145.