Study of Landau theory and universal curve on La0.6-xGdxSr0.4MnO3 (x= 0 - 0.1) manganite

Document Type : Original Article


1 Beijing National Laboratory for Condensed Matter Physics and Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.

2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

3 Education of Semnan province, Semnan, Iran.


In this study, the magnetocaloric effect and magnetic properties of La0.6-xGdxSr0.4MnO3 (x= 0-0.1) samples (with the R-3c space group crystalize in rhombohedral structure) synthesized by the Sol-gel method is presented here. The aim of the study is the investigation of the Landau theory and universal curve approach applied to the magnetic entropy change of La0.6-xGdxSr0.4MnO3 (x= 0-0.1) compounds. A universal curve is an important tool that allows us to compare the performance quality of different materials during measurements, regardless of their nature, processing, or experimental settings. Thermodynamic models were used to calculate the MCE. Theoretical and experimental data -∆SM (T) are well-matched in the compounds. The study of the universal curve and Landau theory showed that the nature of the transition is the second-order ferromagnetic (FM) -paramagnetic (PM) magnetic phase transition. From an application point of view, theoretical research confirmed that compounds containing Gd in the La site can be used for magnetic refrigeration technology.


Main Subjects

[1] S.K. Çetin, G. Akça, A. Ekicibil, Impact of small Er rare
earth element substitution on magnetocaloric
properties of (La0.9Er0.1)0.67Pb0.33MnO3 perovskite,
Journal of Molecular Structure, 1196 (2019) 658-661.
[2] E.A. Balfour, Y.F. Shang, Q. Zheng, Y.T. Cao, H. Fu, A.A.
El-Gendy, R.L. Hadimani,Multiphase Ho36Co48Al16 alloy
featuring table-like magnetocaloric effect, Journal of
Magnetism and Magnetic Materials, 467 (2018) 108-
[3] Wei, Zhong, Au Chak-Tong, and Du You-Wei. "Review
of magnetocaloric effect in perovskite-type oxides,
Chinese Physics B 22, 5 (2013) 057501.
[4] V.Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M.
Moreno-Ramírez, A. Conde. "Magnetocaloric effect:
From materials research to refrigeration
devices." Progress in Materials Science 93 (2018) 112-
[5] N. Nedelko, S. Lewinska, A. Pashchenko, I. Radelytskyi,
R. Diduszko, E. Zubov, W. Lisowski J.W. Sobczak, K.
Dyakonov, A. Ślawska-Waniewska, V. Dyakonov,
Magnetic properties and magnetocaloric effect in La0.
7Sr0. 3− xBixMnO3 manganites. Journal of Alloys and
Compounds 640 (2015) 433-439.
[6] M.H. Ehsani, T. Raoufi, F.S. Razavi. Impact of Gd ion
substitution on the magneto-caloric effect of
La0.6-xGdxSr0.4MnO3 (x= 0, 0.0125, 0.05, 0.10)
manganites, Journal of Magnetism and Magnetic
Materials, 475 (2019) 484-492.
[7] M.H. Ehsani, T. Raoufi. Effect of Gd substitution on the
critical scaling of the ferromagnetic transition of
La0.6-xGdxSr0.4MnO3 (x= 0, 0.05, 0.1)
manganite, Journal of Alloys and Compounds, 769
(2018) 649-659.
[8] Z.R. Zhao, T. Jing, G.F. Wang, Y.F. Li, Q. Ma, X.F. Zhang,
Comparative Study of Magnetocaloric Effect inLa0.67Ca0.20Sr0.13MnO3 Manganite Prepared by Sol-Gel Method and Spark Plasma Sintering, Journal of Superconductivity and Novel Magnetism, 32 (2019) 993-999.
[9] Nasri, Maria, A. Cherif, E. Dhahri, Magnetic Entropy Change in La0.57Nd0.1Sr0.13Ag0.2MnO3 by Means of Theoretical Models, Journal of Low Temperature Physics, 196 (2019) 386-400.
[10] M. Koubaa, Y. Regaieg, W. Cheikhrouhou Koubaa, A. Cheikhrouhou, S. Ammar-Merah, F. Herbst, Magnetic and magnetocaloric properties of lanthanum manganites with monovalent elements doping at A-site, Journal of magnetism and magnetic materials, 323(2011) 252-257.
[11] R. M’nassri, A. Cheikhrouhou, Magnetocaloric effect in LaFe10.7Co0.8Si1.5 compound near room temperature, Journal of Superconductivity and Novel Magnetism, 27 (2014) 1059-1064.
[12] M.R. Laouyenne, M. Baazaoui, Sa Mahjoub, W. Cheikhrouhou-Koubaa, and M. Oumezzine. "Enhanced magnetocaloric effect with the high tunability of bismuth in La0.8Na0. 2Mn1− xBixO3 (0≤ x≤ 0.06) perovskite manganites." Journal of Alloys and Compounds, 720 (2017) 212-220.
[13] H. Khlifa, R. Ben, M’nassri, W. Cheikhrouhou-Koubaa, E. K. Hlil, and A. Cheikhrouhou. "Effects of synthesis route on the structural, magnetic and magnetocaloric properties of Pr0.8K0.2MnO3." Ceramics International, 43 (2017) 1853-1861.
[14] E. Tka, K. Cherif, J. Dhahri, Evolution of structural, magnetic and magnetocaloric properties in Sn-doped manganites La0.57Nd0.1Sr0.33Mn1−xSnxO3 (x= 0.05–0.3), Applied Physics A, 116 (2014) 1181-1191.
[15] V. Franco, A. Conde, Virgil Provenzano, D. Robert Shull, "Scaling analysis of the magnetocaloric effect in Gd5Si2Ge1.9X0.1 (X= Al, Cu, Ga, Mn, Fe, Co)." Journal of magnetism and magnetic materials, 322 (2010) 218-223.
[16] S. Kılıç Çetin, G. Akça, A.O. Ayaş, M. Akyol, A. Ekicibil, Structural, Magnetic, and Magnetocaloric Properties of Pb-Substituted La0.7(Te1-xPbx)0.3MnO3 (0.0 ≤ x ≤ 0.3) Manganites. Journal of Superconductivity and Novel Magnetism, 33 (2020) 527-538.
[17] A. Zaidi, Z. Mohamed, J. Dhahri, E.K. Hlil, T. Alharbi, M. Zaidi, Structural, magnetic and magnetocaloric properties of polycrystalline La0.67Ba0.33− x ZnxMnO3 (x= 0.15 and 0.2) manganites. Applied Physics A, 122 (2016) 1-10.
[18] A. Elghoul, A. Krichene, W. Boujelben, Landau theory and critical behavior near the ferromagnetic-paramagnetic transition temperature in Pr0.63A0.07Sr0.3MnO3 (A= Pr, Sm and Bi) manganites, Journal of Physics and Chemistry of Solids, 108 (2017) 52-60.
[19] M.H. Ehsani, T. Raoufi, and A. Javadiyan, Critical behavior and size dependence of magnetic entropy changes on La0.6Sr0.4MnO3 manganite, Journal of Superconductivity and Novel Magnetism, 31 (2018) 3723-3732.
[20] A. Bouderbala, J. Makni-Chakroun, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, S. Nowak, S. Ammar-Merah, Structural, magnetic and magnetocaloric study of La0.7−xEuxSr0.3MnO3 (x= 0.1, 0.2 and 0.3) manganites, Ceramics International, 41 (2015) 7337-7344.