Fabrication of multi-layer antireflection coating consisting of ZnS and MgF2

Document Type : Original Article


1 Thin Film Lab, Faculty of Physics, University of Semnan, Semnan, Islamic Republic of Iran

2 Education of Semnan province, Semnan, Iran


In this study, Magnesium Fluoride (MgF2) and Zinc Sulfide (ZnS) multi-layer antireflection coatings were prepared using Glancing Angle Deposition (GLAD) technique. MgF2 and ZnS materials have been coated in a Hind - Hivac coating unit (model 15F) on glass substrates. Antireflection coatings were prepared at different oblique incident flux angles (α = 40°, 65°,70°, 80°) by the thermal evaporation method. The Grazing incidence X-ray diffraction (GIXRD)analysis indicated that the thin films coated at different incident angles were crystallized in a single phase with an orthorhombic structure. The XRD results showed improvement of the film crystallinity upon grain size increment. Optical properties were investigated throughout the measurement of transmission spectra and refractive index and extinction in the visible region. The refractive index of films decreased from 2.8 to 1.66 as the flux angle increased from 40° to 80°. The extinction coefficient of films increased from 0.03849 to 0.05997 as the flux angle increased from 40° to 80°.


Main Subjects

[1] R. Zarei Moghadam, H. Ahmadvand, M. Jannesari, Design 
and fabrication of multi-layers infrared antireflection 
coating consisting of ZnS and Ge on ZnS substrate, 
Infrared Phys. Technol. 75 (2016) 18-21.
[2] B. Gandham, R. Hill, H.A. Macleod, M. Bowden, 
Antireflection coatings on solar cells, Sol. Cells. 1 
(1979) 3–22.
[3] A. Uzum, M. Kuriyama, H. Kanda, Y. Kimura, Sprayed and 
spin-coated multilayer antireflection coating films for 
nonvacuum processed crystalline silicon solar cells, 
Int. J. Photoenergy. 2 (2017) 1-5.
[4] J.W. Leem, D.H. Jun, J. Heo, W.K. Park, J.H. Park, Singlematerial zinc sulfide bilayer antireflection coatings for 
GaAs solar cells, J. Opt. Express 21 (2013) 821–828.
[6] N. Kaiser, Review of the fundamentals of thin-film 
growth, Appl. Opt. 41 (2002) 3053–3060.
[7] L. Abelmann, C. Lodder, Oblique evaporation and 
surface diffusion, Thin Solid Films. 305 (1997) 1–21.
[8] R. Swanepoel, Determination of the thickness and 
optical constants of amorphous silicon, J. Phys. E. 16 
(1983) 1214.
[9] M. H. Maleki, H. R. Dizaji, A. Ghorbani, Improving AntiReflection MgF2 Thin Films by Laser Shock Peening 
and Investigation of its Laser Damage Threshold, J. 
Appl. Spectrosc. 82 (2015) 58-62. 
[10] M. Gholizadeh, R. Zarei Moghadam, A.A. Mohammadi,
M.H. Ehsani, H. Rezagholipour Dizaji, Design and 
fabrication of MgF2 single-layer antireflection coating 
by glancing angle deposition, Mater. Res. Innov. 24 
(2020) 442-446.
[11] M.H. Ehsani, R.Z. Moghadam, H.R. Dizaji, P. Kameli, 
Surface modification of ZnS films by applying an 
external magnetic field in vacuum chamber, Mater Res 
Express. 4 (2017) 096408. 
[12] N. Tajik, M.H. Ehsani, R.Z. Moghadam, H.R. Dizaji, Effect 
of GLAD technique on optical properties of ZnS
multilayer antireflection coatings, Mater Res Bull. 100 
(2018) 265-274.
[13] B. Liu, R. Luo, Q. Liang, Y. Zheng, B. Li, J. Zhang, W. Li, L.
Wu, L. Feng, Preparation of novel CdS/ZnS composite 
window layer for CdTe thin film solar cell, J. Mater. Sci. 
Mater. Electron. 26 (2015) 9985.
[14] X. Wang, H. Huang, B. Liang, Z. Liu, D. Chen, G. Shen, ZnS 
nanostructures: synthesis, properties, and 
applications, Crit. Rev. Solid State Mater. Sci. 38 
(2013) 57–90.
[15] S. Ummartyotin, Y. Infahsaeng, a comprehensive review 
on ZnS: from synthesis to an approach on solar cell, 
Renew. Sust. Energ. Rev. 55 (2016) 17- 24.
[16] D. Hass, Y. Marciano and H. Wadley, Physical vapor
deposition on cylindrical substrates, Surf. Coat. 
Technol. 185 (2004) 283-291.
[17] M. Panjan, Influence of substrate rotation and target
arrangement on the periodicity and uniformity of 
layered coatings, Surf. Coat. Technol. 235 (2013) 32-
[18] G. Oh, E. K. Kim, Analysis of ZnS and MgF2 layered 
nanostructures grown by glancing angle deposition 
for optical design, Nanotechnology 31 (2020) 245301.
[19] S. Essig, C. Allebé, T. Remo, J.F. Geisz, M.A. Steiner, K.
Horowitz, L. Barraud, J.S. Ward, M. Schnabel, A. 
Descoeudres, D.L. Young, Raising the one-sun 
conversion efficiency of III–V/Si solar cells to 32.8% 
for two junctions and 35.9% for three 
junctions, Nature Energy 2 (2017) 1-9.
[20] S.L. Diedenhofen, G. Grzela, E. Haverkamp, G. Bauhuis, J. 
Schermer, J.G. Rivas, Broadband and omnidirectional 
anti-reflection layer for III/V multi-junction solar cells, 
Sol. Energ. Mater. Sol. C. 101 (2012) 308–14.
[21] A.R. Chowdhuri, D.U. Jin, C.G. Takoudis, SiO2/Si (100) 
interface characterization using infrared 
spectroscopy: estimation of substoichiometry and 
strain, Thin Solid Films 457 (2004) 402-405.
[22] W. Zhang, K. Hu, J. Tu, A. Aierken, D. Xu, G. Song, X. Sun, L. 
Li, K. Chen, D. Zhang, and Y. Zhuang, Broadband graded 
refractive index TiO2/Al2O3/MgF2 multilayer 
antireflection coating for high efficiency multijunction solar cell, Sol Energy 217 (2021) 271-279.
[23] D. H. Hwang, J. H. Ahn, K. N. Hui, K. S. Hui, Y. G. Son,
Structural and optical properties of ZnS thin films 
deposited by RF magnetron sputtering, Nanoscale Res. 
Lett. 7 (2012) 26–32.
[24] T. Liu, Y. Li, H. Ke, Y. Qian, Sh. Duo, Y. Hong, X. Sun,
Chemical bath co–deposited ZnS film prepared from 
different zinc salts: ZnSO4–Zn(CH3COO)2, Zn(NO3)2–
Zn(CH3COO)2, or ZnSO4–Zn(NO3)2, J. Mater. Sci. 
Tech. 32 (2015) 207–217. 
[25] O. Ozakın, B. Guzeldir, M. Ali Yıldırım, M. Saglam, A. Ates,
Influence of film thickness on structural and optical 
properties of ZnS thin films obtained by SILAR method 
and analysis of Zn/ZnS/n-GaAs/In sandwich 
structure, Phys. Stat. Solidi A. 209 (2012) 687–693.
[26] Ş. Korkmaz, S. Elmas, N. Ekem, S. Pat, M. Z. Balbağ
Deposition of MgF2 thin films for antireflection coating 
by using thermionic vacuum arc (TVA), Opt. Commun. 
285 (2012) 2373-2376.
[27] P. O. Offor, B. A. Okorie, F. I. Ezema, V. S. Aigbodion, C. 
C. DanielMkpume, A.D.Omaha, Synthesis and 
characterization of nanocrystalline zinc sulphide thin 
films by chemical spray pyrolysis, J. Alloy. Compd. 650 
(2015) 381-385.
[28] P. P. Hankare, P. A. Chate, D. J. Sathe, A. A. Patil,
Structure, Surface morphological and opto-electronic 
properties of zinc sulphide thin films deposited by dip 
method, Appl. Surf. Sci. 256 (2009) 81-84.
[29] H. M. M. N. Hennayaka, H. S. Lee, Structural and optical 
properties of ZnS thin film grown by pulsed 
electrodeposition, Thin Solid Films. 548 (2013) 86-90. 
[30] C. Guo, M. Kong, D. Lin, C. Liu, and B. Li, Microstructurerelated properties of magnesium fluoride films at 
193nm by oblique-angle deposition, Opt. Express. 21 
(2013) 960-967.
[31] M.R. Sazideh, M.H. Ehsani, H.R. Dizaji, R.Z. Moghadam, 
Substrate-induced changes of structural and optical 
properties of SnS films prepared by glancing angle 
deposition, Thin Solid Films. 663 (2018) 85-92.
[32] M.R. Sazideh, H.R. Dizaji, M.H. Ehsani, R.Z. Moghadam, 
Modification of the morphology and optical properties 
of SnS films using glancing angle deposition technique, 
Appl. Surf. Sci. 405 (2017) 514-520. 
[33] F.C. Akkari, R. Brini, M. Kanzari, B. Rezig, High 
absorbing CuInS2 thin films growing by oblique angle 
incidence deposition in presence of thermal gradient, 
J. Mater. Sci. 40 (2005) 5751–5755.
[34] Y. Zhong, Y.C. Shin, C.M. Kim, B.G. Lee, E.H. Kim, Y.J. 
Park, K.M.A. Sobahan, C.K. Hwangbo, Y.P. Lee, T.G. Kim, 
Optical and electrical properties of indium tin oxide 
thin films with tilted and spiral microstructures 
prepared by oblique angle deposition, J. Mater. Res. 23 
(2008) 2500–2505.
[35] S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, U. 
Schulz, Antireflection coatings combining interference 
multilayers and a nanoporous MgF2 top layer 
prepared by glancing angle deposition, Surf. Coat. 
Technol. 267 (2015) 40-44.
[36] S.Z. Rahchamani, H.R. Dizaji, M.H. Ehsani, Study of
structural and optical properties of ZnS zigzag 
nanostructured thin films, Appl. Surf. Sci. 356 (2015) 
[37] M. H. Ehsani, N. Tajik, M. R. Sazideh, H. Rezagholipour 
Dizaji, R. Zarei Moghadam. Tuning filtering properties 
of SnS films deposited on Glass/ITO substrate using 
glancing angle deposition technique, Mater. Res. 
Express. 6 (2019) 096415.
[38] J.I. Pankove, Optical Processes in Semicondutors 
Courier Corporation, New York: Dover publication 
institute. (2012).
[39] S.S. Hegde, A.G. Kunjomana, M. Prashantha, C. Kumar, 
K. Ramesh, Photovoltaic structures using thermally 
evaporated SnS and CdS thin films, Thin Solid Films. 
545 (2013) 543-547.
[41] S. Bhaskar, S.B. Majumder, M. Jain, P.S. Dobal, R.S.
Katiyar, Studies on the structural, microstructural 
and optical properties of sol–gel derived lead 
lanthanum titanate thin films. Mater. Sci. Eng. B. 87 
(2001) 178-190. 
[42] K. Punitha R. Sivakumar C. Sanjeeviraja V. Ganesan, 
Influence of post-deposition heat treatment on 
optical properties derived from UV–vis of cadmium 
telluride (CdTe) thin films deposited on amorphous 
substrate, Appl. Surf. Sci. 344 (2015) 89-100.