[1] K. Tsukagoshi, B.W. Alphenaar, H. Ago, Coherent
transport of electron spin in a ferromagnetically
contacted carbon nanotube, Nature 401 (1999)
572.
[2] Z.H. Xiong, D. Wu, Z.V. Vardeny, J. Shi, Giant
magnetoresistance in organic spin-valves, Nature
427 (2004) 821.
[3] V. Dediu, M. Murgia, F.C. Matacotta, C. Taliani, S.
Barbanera, Room temperature spin polarized
injection in organic semiconductor, Solid State
Commun. 122 (2002) 181.
[4] J.H. Shim, K.V. Raman, Y.J. Park, T.S. Santos, G.X.
Miao, B. Satpati, J.S. Moodera, Large spin diffusion
length in an amorphous organic semiconductor,
Phys. Rev. Lett. 100 (2008) 226603.
[5] T.S. Santos, J.S. Lee, P. Migdal, I.C. Lekshmi, B. Satpati,
J.S. Moodera, Room-temperature tunnel
magnetoresistance and spin-polarized tunneling
through an organic semiconductor barrier, Phys.
Rev. Lett. 98 (2007) 016601.
[6] M. Ouyang, D.D. Awschalom, Coherent spin transfer
between molecularly bridged quantum dots, Science
301 (2003) 1074.
[7] J.R. Petta, S.K. Slater, D.C. Ralph, Spin-dependent
transport in molecular tunnel junctions, Phys. Rev.
Lett. 93 (2004) 136601.
[8] S. Sanvito, Memoirs of a spin, Nature Nanotechnology
2 (2007) 204.
[9] Z. Ning, Y. Zhu, J. Wang, H. Guo, Quantitative analysis
of nonequilibrium spin injection into molecular
tunnel junctions, Phys. Rev. Lett.100 (2008) 056803.
[10] R.Q. Wang, Y.Q. Zhou, B.Wang, D.Y. Xing, Spin-dependent
inelastic transport through single-molecule
junctions with ferromagnetic electrodes, Phys. Rev.
B 75 (2007) 045318.
[11] E.G. Emberly, G. Kirczenow, Molecular spintronics:
spin-dependent electron transport in molecular
wires, Chem. Phys. 281 (2002) 311.
[12] S.K. Maiti, Curvature effect on spin polarization in a
three-terminal geometry in presence of Rashba
spin–orbit interaction, Phys. Lett. A 379 (2015) 361.
[13] S.K. Maiti, Externally controlled selective spin transfer
through a two-terminal bridge setup, Eur. Phys. J. B
88 (2015) 172.
[14] M. Patra, S.K. Maiti, All-spin logic operations: Memory
device and reconfigurable computing, Europhys.
Lett. 121 (2018) 38004.
[15] S. Z. Wang, K. Xia, G. E. Bauer, Thermoelectricity and
disorder of FeCo/MgO/FeCo magnetic tunnel
junctions, Phys. Rev. B, 90 (2014) 224406.
[16] M. Zeng, Y. Feng, G. Liang, Graphene-based spin
caloritronics, Nano lett. 11 (2011) 1369.
[17] A. Fert, Nobel Lecture: Origin, development, and
future of spintronics, Rev. Mod. Phys. 80 (2008)
1517.
[18] I. Zutic, J. Fabian, S. Das Sarma, Spintronics:
Fundamentals and applications, Rev. Mod. Phys. 76
(2004) 323.
[19] G.E. Bauer, E. Saitoh, B.J. Van Wees, Spin caloritronics,
Nature materials 11 (2012) 391.
[20] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae,
K. Ando, S. Maekawa, E. Saitoh, Observation of the
spin Seebeck effect, Nature 455 (2008) 778.
[21] K. Uchida, J. Xiao, H. Adachi, J.I. Ohe, S. Takahashi, J.
Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E.
Bauer, Spin seebeck insulator, Nature materials 9
(2010) 894.
[22] A. Torres, M.P. Lima, A. Fazzio, da A. J. Silva, Spin
caloritronics in graphene with Mn, Appl. Phys. Lett.
104 (2014) 072412.
[23] M. Shirdel-Havar, R. Farghadan, Spin caloritronics in
spin semiconducting armchair graphene
nanoribbons, Phys. Rev. B 97 (2018) 235421.
[24] O. Cretu, A.V. Krasheninnikov, J.A. Rodriguez- Manzo,
L. Sun, R.M. Nieminen, F. Banhart, Migration and
localization of metal atoms on strained graphene,
Phys. Rev. Lett. 105 (2010) 196102.
[25] R. Meservey, P.M. Tedrow, Spin-polarized electron
tunneling, Phys. Rep. 238 (1994) 173.
[26] J.S. Moodera, J. Nassar, G. Mathon, Annu. Spintunneling in ferromagnetic junctions, Rev. Mater. Sci.
29 (1999) 381.
[27] A.V. Krasheninnikov, P.O. Lehtinen, A.S. Foster, P.
Pyykk€o, R.M. Nieminen, Embedding transitionmetal atoms in graphene: structure, bonding, and
magnetism, Phys. Rev. Lett. 102 (2009) 126807.
[28] W.Y. Kim, K.S. Kim, Prediction of very large values of
magnetoresistance in a graphene nanoribbon device,
Nature Nanotechnology 3 (2008) 408.
[29] T. Kimura, Y. Otani, T. Sato, S. Takahashi, S. Maekawa,
Room-temperature reversible spin Hall effect, Phys.
Rev. Lett. 98 (2007) 156601.
[30] A.A. Ovchinnikov, V.N. Spector, Organic ferromagnets.
New results, Synth. Met. 27 (1988) B615.
[31] Z.W. Tan, J.-S. Wang, Ch. K. Gan, First-principles study
of heat transport properties of graphene
nanoribbons, Nano letters 11 (2010) 214.
[32] Y. Dubi, M. Di Ventra, Thermospin effects in a
quantum dot connected to ferromagnetic leads, Phys.
Rev. B 79 (2009) 081302.
[33] J. Zheng, F. Chi, Y. Guo, Large spin figure of merit in a
double quantum dot coupled to noncollinear
ferromagnetic electrodes, J. Phys.: Condens. Matter
24 (2012) 265301.
[34] M. Wierzbicki, R. Swirkowicz, J. Barnas, Giant spin
thermoelectric efficiency in ferromagnetic graphene
nanoribbons with antidots, Phys. Rev. B 88 (2013)
235434.
[35] X. Chen, Y. Liu, B.L. Gu, W. Duan, F. Liu, Giant roomtemperature spin caloritronics in spinsemiconducting graphene nanoribbons, Phys. Rev. B
90 (2014) 121403.