[1] Ozawa, T., Price, H.M., Amo, A., Goldman, N., Hafezi, M., Lu, L., Rechtsman, M.C., Schuster, D., Simon, J., Zilberberg, O. and Carusotto, I., 2019. Topological photonics. Reviews of Modern Physics, 91(1), p.015006.
[2] Zimmermann, M., Efremov, M.A., Zeller, W., Schleich, W.P., Davis, J.P. and Narducci, F.A., 2019. Representation-free description of atom interferometers in time-dependent linear potentials. New Journal of Physics, 21(7), p.073031.
[3] Boyko, I., Petryk, M. and Lebovka, N., 2024. Tunnel transport problem for open multilayer nitride nanostructures with an applied constant magnetic field and time-dependent potential: An exact solution. Physical Review B, 110(4), p.045438.
[4] Iserles, A., Kropielnicka, K. and Singh, P., 2018. Magnus--Lanczos methods with simplified commutators for the Schrödinger equation with a time-dependent potential. SIAM Journal on Numerical Analysis, 56(3), pp.1547-1569.
[5] Louwen, A., Van Sark, W., Schropp, R. and Faaij, A., 2016. A cost roadmap for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 147, pp.295-314.
[6] Quach, J.Q., Su, C.H., Martin, A.M., Greentree, A.D. and Hollenberg, L.C., 2011. Reconfigurable quantum metamaterials. Optics express, 19(12), pp.11018-11033.
[7] Kulik, I.O., 2007. Mesoscopic Aharonov-Bohm loops in a time-dependent potential: Quasistationary electronic states and quantum transitions. Physical Review B—Condensed Matter and Materials Physics, 76(12), p.125313.
[8] Alamir, A., Capuzzi, P. and Vignolo, P., 2013. Dynamical properties of a condensate in a moving random potential. The European Physical Journal Special Topics, 217(1), pp.63-68.
[9] Hernandez-Tenorio, C., Belyaeva, T.L. and Serkin, V.N., 2007. Parametric resonance for solitons in the nonlinear Schrödinger equation model with time-dependent harmonic oscillator potential. Physica B: Condensed Matter, 398(2), pp.460-463.
[10] Fring, A. and Tenney, R., 2020. Time-independent approximations for time-dependent optical potentials. The European Physical Journal Plus, 135(2), p.163.
[11] Yakubo, K., Feng, S. and Hu, Q., 1996. Simulation studies of photon-assisted quantum transport. Physical Review B, 54(11), p.7987.
[12] Ahmed, A., 2024. Tunneling Probability of Quantum Wavepacket in Time-Dependent Potential Well. Quanta, 13(1).
[13] Dimeo, R.M., 2014. Wave packet scattering from time-varying potential barriers in one dimension. American Journal of Physics, 82(2), pp.142-152.
[14] Laskin, N., 2000. Fractional quantum mechanics and Lévy path integrals. Physics Letters A, 268(4-6), pp.298-305.
[15] Manikandan, K., Aravinthan, D., Sudharsan, J.B. and Reddy, S.R.R., 2022. Soliton and rogue wave solutions of the space–time fractional nonlinear Schrödinger equation with PT-symmetric and time-dependent potentials. Optik, 266, p.169594.
[16] Li, M., 2019. A high-order split-step finite difference method for the system of the space fractional CNLS. The European Physical Journal Plus, 134(5), p.244.
[17] Zhang, L., Yang, R., Zhang, L. and Wang, L., 2021. A Conservative Crank‐Nicolson Fourier Spectral Method for the Space Fractional Schrödinger Equation with Wave Operators. Journal of Function Spaces, 2021(1), p.5137845.
[18] Liu, S., Zhang, Y., Malomed, B.A. and Karimi, E., 2023. Experimental realisations of the fractional Schrödinger equation in the temporal domain. Nature Communications, 14(1), p.222.
[19] Nizam, E. and Rahman, K., 2023, December. A Compact Split-step Finite Difference Method for Solving the Nonlinear Schrödinger Equation. In Journal of Physics: Conference Series (Vol. 2660, No. 1, p. 012027). IOP Publishing.
[20] Zhu, X., Wan, H. and Zhang, Y., 2024. A split-step finite element method for the space-fractional Schrödinger equation in two dimensions. Scientific Reports, 14(1), p.24257.
[21] Wang, P. and Huang, C., 2016. Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions. Computers & Mathematics with Applications, 71(5), pp.1114-1128.
[22] Home, D., Majumdar, A.S. and Matzkin, A., 2012. Effects of a transient barrier on wavepacket traversal. Journal of Physics A: Mathematical and Theoretical, 45(29), p.295301.
[23] Mousavi, S.V. and Miret-Artés, S., 2019. On non-linear Schrödinger equations for open quantum systems. The European Physical Journal Plus, 134(9), p.431.
[24] Ali, M.M., Majumdar, A.S. and Home, D., 2002. Understanding quantum superarrivals using the Bohmian model. Physics Letters A, 304(3-4), pp.61-66.
[25] Balaž, A., Vidanović, I., Bogojević, A., Belić, A. and Pelster, A., 2011. Fast converging path integrals for time-dependent potentials: II. Generalization tomany-body systems and real-time formalism. Journal of Statistical Mechanics: Theory and Experiment, 2011(03), p.P03005.
[26] Wagner, T., Çelik, H., Gaebel, S., Berger, D., Lu, P.H., Häusler, I., Owschimikow, N., Lehmann, M., Dunin-Borkowski, R.E., Koch, C.T. and Hatami, F., 2025. Dynamic Imaging of Projected Electric Potentials of Operando Semiconductor Devices by Time-Resolved Electron Holography. Electronics, 14(1), p.199.
[27] Baek, S.K., Yi, S.D. and Kim, M., 2016. Particle in a box with a time-dependent δ-function potential. Physical Review A, 94(5), p.052124.
[28] Ehsani, M.H., Sabzevar, M. and Soleimani, M., 2025. Fractional Wave Propagation in Asymmetric Nonlinear Media: Implications for Metamaterial-Based Wave Control. Progress in Physics of Applied Materials, 5(2), pp.107-116.
[29] Shegelski, M.R., Poole, T. and Thompson, C., 2013. Capture of a quantum particle by a moving trapping potential. European Journal of Physics, 34(3), p.569.
[30] Xia, F., Wang, H., Xiao, D., Dubey, M. and Ramasubramaniam, A., 2014. Two-dimensional material nanophotonics. Nature photonics, 8(12), pp.899-907.
[31] Kilbas, A.A., 2006. Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204.
[32] Solaimani, M., 2020. Nontrivial wave-packet collision and broadening in fractional Schrodinger equation formalism. Journal of Modern Optics, 67(12), pp.1128-1137.
[33] Farag, N.G., Eltanboly, A.H., El-Azab, M.S. and Obayya, S.S., 2023. Numerical Solutions of the (2+ 1)-Dimensional Nonlinear and Linear Time-Dependent Schrödinger Equations Using Three Efficient Approximate Schemes. Fractal and Fractional, 7(2), p.188.
[34] Shegelski, M.R., Poole, T. and Thompson, C., 2013. Capture of a quantum particle by a moving trapping potential. European Journal of Physics, 34(3), p.569.
[35] Bandyopadhyay, S., Majumdar, A.S. and Home, D., 2002. Quantum-mechanical effects in a time-varying reflection barrier. Physical Review A, 65(5), p.052718.
[36] Majumdar, A.S. and Home, D., 2002. Quantum superarrivals and information transfer through a time-varying boundary. Pramana, 59(2), pp.321-328.