Tunable Superarrival in Fractional Quantum Media

Document Type : Original Article

Authors

1 Faculty of Physics, Semnan University, Semnan 35195-363, Iran

2 Department of Physics, Qom University of Technology, Qom 1519-37195, Iran

Abstract

In this study, we present a numerical investigation of wave packet dynamics in a nonlinear and dispersive medium described by the space-fractional Schrödinger equation, with direct relevance to quantum electronic device applications. Employing the Split-Step Finite Difference (SSFD) method, we analyse the superarrival phenomenon, where the arrival time of a Gaussian wave packet is accelerated due to the presence of a decelerating potential barrier. Two key configurations are explored: a barrier approaching the wave packet and a receding one. We show that the superarrival response is highly sensitive to system parameters such as the fractional order, nonlinearity, dispersion, and the barrier's motion profile. Our findings demonstrate that superarrival can be effectively tuned, offering new design strategies for emerging quantum electronic components such as ultrafast signal switches, wave-based logic gates, and controllable tunneling junctions in nano-engineered systems. This work bridges fundamental quantum transport with the functionality of next-generation electronic devices.

Keywords

Main Subjects


© 2025 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Ozawa, T., Price, H.M., Amo, A., Goldman, N., Hafezi, M., Lu, L., Rechtsman, M.C., Schuster, D., Simon, J., Zilberberg, O. and Carusotto, I., 2019. Topological photonics. Reviews of Modern Physics91(1), p.015006.
[2] Zimmermann, M., Efremov, M.A., Zeller, W., Schleich, W.P., Davis, J.P. and Narducci, F.A., 2019. Representation-free description of atom interferometers in time-dependent linear potentials. New Journal of Physics21(7), p.073031.
[3] Boyko, I., Petryk, M. and Lebovka, N., 2024. Tunnel transport problem for open multilayer nitride nanostructures with an applied constant magnetic field and time-dependent potential: An exact solution. Physical Review B110(4), p.045438.
[4] Iserles, A., Kropielnicka, K. and Singh, P., 2018. Magnus--Lanczos methods with simplified commutators for the Schrödinger equation with a time-dependent potential. SIAM Journal on Numerical Analysis56(3), pp.1547-1569.
[5] Louwen, A., Van Sark, W., Schropp, R. and Faaij, A., 2016. A cost roadmap for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells147, pp.295-314.
[6] Quach, J.Q., Su, C.H., Martin, A.M., Greentree, A.D. and Hollenberg, L.C., 2011. Reconfigurable quantum metamaterials. Optics express19(12), pp.11018-11033.
[7] Kulik, I.O., 2007. Mesoscopic Aharonov-Bohm loops in a time-dependent potential: Quasistationary electronic states and quantum transitions. Physical Review B—Condensed Matter and Materials Physics76(12), p.125313.
[8] Alamir, A., Capuzzi, P. and Vignolo, P., 2013. Dynamical properties of a condensate in a moving random potential. The European Physical Journal Special Topics217(1), pp.63-68.
[9] Hernandez-Tenorio, C., Belyaeva, T.L. and Serkin, V.N., 2007. Parametric resonance for solitons in the nonlinear Schrödinger equation model with time-dependent harmonic oscillator potential. Physica B: Condensed Matter398(2), pp.460-463.
[10] Fring, A. and Tenney, R., 2020. Time-independent approximations for time-dependent optical potentials. The European Physical Journal Plus135(2), p.163.
[11] Yakubo, K., Feng, S. and Hu, Q., 1996. Simulation studies of photon-assisted quantum transport. Physical Review B54(11), p.7987.
[12] Ahmed, A., 2024. Tunneling Probability of Quantum Wavepacket in Time-Dependent Potential Well. Quanta13(1).
[13] Dimeo, R.M., 2014. Wave packet scattering from time-varying potential barriers in one dimension. American Journal of Physics82(2), pp.142-152.
[14] Laskin, N., 2000. Fractional quantum mechanics and Lévy path integrals. Physics Letters A268(4-6), pp.298-305.
[15] Manikandan, K., Aravinthan, D., Sudharsan, J.B. and Reddy, S.R.R., 2022. Soliton and rogue wave solutions of the space–time fractional nonlinear Schrödinger equation with PT-symmetric and time-dependent potentials. Optik266, p.169594.
[16] Li, M., 2019. A high-order split-step finite difference method for the system of the space fractional CNLS. The European Physical Journal Plus134(5), p.244.
[17] Zhang, L., Yang, R., Zhang, L. and Wang, L., 2021. A Conservative Crank‐Nicolson Fourier Spectral Method for the Space Fractional Schrödinger Equation with Wave Operators. Journal of Function Spaces2021(1), p.5137845.
[18] Liu, S., Zhang, Y., Malomed, B.A. and Karimi, E., 2023. Experimental realisations of the fractional Schrödinger equation in the temporal domain. Nature Communications14(1), p.222.
[19] Nizam, E. and Rahman, K., 2023, December. A Compact Split-step Finite Difference Method for Solving the Nonlinear Schrödinger Equation. In Journal of Physics: Conference Series (Vol. 2660, No. 1, p. 012027). IOP Publishing.
[20] Zhu, X., Wan, H. and Zhang, Y., 2024. A split-step finite element method for the space-fractional Schrödinger equation in two dimensions. Scientific Reports14(1), p.24257.
[21] Wang, P. and Huang, C., 2016. Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions. Computers & Mathematics with Applications71(5), pp.1114-1128.
[22] Home, D., Majumdar, A.S. and Matzkin, A., 2012. Effects of a transient barrier on wavepacket traversal. Journal of Physics A: Mathematical and Theoretical45(29), p.295301.
[23] Mousavi, S.V. and Miret-Artés, S., 2019. On non-linear Schrödinger equations for open quantum systems. The European Physical Journal Plus134(9), p.431.
[24] Ali, M.M., Majumdar, A.S. and Home, D., 2002. Understanding quantum superarrivals using the Bohmian model. Physics Letters A304(3-4), pp.61-66.
[25] Balaž, A., Vidanović, I., Bogojević, A., Belić, A. and Pelster, A., 2011. Fast converging path integrals for time-dependent potentials: II. Generalization tomany-body systems and real-time formalism. Journal of Statistical Mechanics: Theory and Experiment2011(03), p.P03005.
[26] Wagner, T., Çelik, H., Gaebel, S., Berger, D., Lu, P.H., Häusler, I., Owschimikow, N., Lehmann, M., Dunin-Borkowski, R.E., Koch, C.T. and Hatami, F., 2025. Dynamic Imaging of Projected Electric Potentials of Operando Semiconductor Devices by Time-Resolved Electron Holography. Electronics14(1), p.199.
[27] Baek, S.K., Yi, S.D. and Kim, M., 2016. Particle in a box with a time-dependent δ-function potential. Physical Review A94(5), p.052124.
[28] Ehsani, M.H., Sabzevar, M. and Soleimani, M., 2025. Fractional Wave Propagation in Asymmetric Nonlinear Media: Implications for Metamaterial-Based Wave Control. Progress in Physics of Applied Materials5(2), pp.107-116.
[29] Shegelski, M.R., Poole, T. and Thompson, C., 2013. Capture of a quantum particle by a moving trapping potential. European Journal of Physics34(3), p.569.
[30] Xia, F., Wang, H., Xiao, D., Dubey, M. and Ramasubramaniam, A., 2014. Two-dimensional material nanophotonics. Nature photonics8(12), pp.899-907.
[31] Kilbas, A.A., 2006. Theory and applications of fractional differential equations. North-Holland Mathematics Studies204.
[32] Solaimani, M., 2020. Nontrivial wave-packet collision and broadening in fractional Schrodinger equation formalism. Journal of Modern Optics67(12), pp.1128-1137.
[33] Farag, N.G., Eltanboly, A.H., El-Azab, M.S. and Obayya, S.S., 2023. Numerical Solutions of the (2+ 1)-Dimensional Nonlinear and Linear Time-Dependent Schrödinger Equations Using Three Efficient Approximate Schemes. Fractal and Fractional7(2), p.188.
[34] Shegelski, M.R., Poole, T. and Thompson, C., 2013. Capture of a quantum particle by a moving trapping potential. European Journal of Physics34(3), p.569.
[35] Bandyopadhyay, S., Majumdar, A.S. and Home, D., 2002. Quantum-mechanical effects in a time-varying reflection barrier. Physical Review A65(5), p.052718.
[36] Majumdar, A.S. and Home, D., 2002. Quantum superarrivals and information transfer through a time-varying boundary. Pramana59(2), pp.321-328.