[1] Pecovska-Gjorgjevich, M., Aleksovska, S., Dimitrovska-Lazova, S. and Marinšek, M., 2016. The role of Cr/Co substitution on dielectric properties of gadolinium orthochromite. Physica Scripta, 91(4), p.045805.
[2] Li, K., Wang, D., Wu, F., Xie, T. and Li, T., 2000. Surface electronic states and photovoltage gas-sensitive characters of nanocrystalline LaFeO3. Materials chemistry and physics, 64(3), pp.269-272.
[3] Li, X., Tang, C., Ai, M., Dong, L. and Xu, Z., 2010. Controllable synthesis of pure-phase rare-earth orthoferrites hollow spheres with a porous shell and their catalytic performance for the CO+ NO reaction. Chemistry of Materials, 22(17), pp.4879-4889.
[4] Arabi, A., Fazli, M. and Ehsani, M.H., 2022. Photocatalytic activity of the La0.7Ca0.3MnO3 nanorods. Progress in Physics of Applied Materials, 2(2), pp.123-131.
[5] Jeong, Y.K., Lee, J.H., Ahn, S.J. and Jang, H.M., 2012. Temperature-induced magnetization reversal and ultra-fast magnetic switch at low field in SmFeO3. Solid state communications, 152(13), pp.1112-1115.
[6] Ahmad, I., Akhtar, M.J., Younas, M., Siddique, M. and Hasan, M.M., 2012. Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO3. Journal of Applied Physics, 112(7).
[7] Wang, Z.Q., Lan, Y.S., Zeng, Z.Y., Chen, X.R. and Chen, Q.F., 2019. Magnetic structures and optical properties of rare-earth orthoferrites RFeO3 (R= Ho, Er, Tm and Lu). Solid State Communications, 288, pp.10-17.
[8] Kamal Warshi, M., Mishra, V., Sagdeo, A., Mishra, V., Kumar, R. and Sagdeo, P.R., 2018. Synthesis and characterization of RFeO3: experimental results and theoretical prediction. Advances in Materials and Processing Technologies, 4(4), pp.558-572.
[9] Lee, J.H., Jeong, Y.K., Park, J.H., Oak, M.A., Jang, H.M., Son, J.Y. and Scott, J.F., 2011. Spin-Canting-Induced Improper Ferroelectricity and Spontaneous Magnetization Reversal in SmFeO3. Physical review letters, 107(11), p.117201.
[10] Nakhaei, M. and Khoshnoud, D.S., 2019. Influence of particle size and lattice distortion on magnetic and dielectric properties of NdFeO3 orthoferrite. Physica B: Condensed Matter, 553, pp.53-58.
[11] Nakhaei, M. and Khoshnoud, D.S., 2021. Structural, magnetic, and electrical properties of RFeO3 (R= Dy, Ho, Yb & Lu) compounds. Journal of Materials Science: Materials in Electronics, 32(11), pp.14286-14300.
[12] Nakhaei, M. and Khoshnoud, D.S., 2021. Study on structural, magnetic and electrical properties of ReFeO3 (Re= La, Pr, Nd, Sm & Gd) orthoferrites. Physica B: Condensed Matter, 612, p.412899.
[13] Dehno, R.T. and Khoshnoud, D.S., 2022. Multiferroic properties in Sm1-xErxFeO3 ceramics. Journal of Magnetism and Magnetic Materials, 541, p.168515.
[14] Ghasemi, E. and Khoshnoud, D.S., 2025. The effect of Mg doping on spin reorientation transition and physical properties of SmFeO3. Journal of Materials Science: Materials in Electronics, 36(5), p.304.
[15] Kashyap, S.J., Sankannavar, R. and Madhu, G.M., 2022. Insights on the various structural, optical and dielectric characteristics of La1-xcaxFeO3 perovskite-type oxides synthesized through solution-combustion technique. Applied Physics A, 128(6), p.518.
[16] Huang, L., Cheng, L., Pan, S., Yao, Q., Long, Q., Wang, M., Chen, Y. and Zhou, H., 2022. Influence of A-site doping barium on structure, magnetic and microwave absorption properties of LaFeO3 ceramics powders. Journal of Rare Earths, 40(7), pp.1106-1117.
[17] Makoed, I.I., Liedienov, N.A., Pashchenko, A.V., Levchenko, G.G., Tatarchuk, D.D., Didenko, Y.V., Amirov, A.A., Rimski, G.S. and Yanushkevich, K.I., 2020. Influence of rare-earth doping on the structural and dielectric properties of orthoferrite La0.50R0.50FeO3 ceramics synthesized under high pressure. Journal of Alloys and Compounds, 842, p.155859.
[18] Ruffo, A., Mozzati, M.C., Albini, B., Galinetto, P. and Bini, M., 2020. Role of non-magnetic dopants (Ca, Mg) in GdFeO3 perovskite nanoparticles obtained by different synthetic methods: structural, morphological and magnetic properties. Journal of Materials Science: Materials in Electronics, 31(20), pp.18263-18277..
[19] Tufiq Jamil, M., Ahmad, J., Hamad Bukhari, S. and Saleem, M., 2018. Effect of Re and Tm-site on morphology structure and optical band gap of ReTmO3 (Re= La, Ce Nd, Gd, Dy, Y and Tm= Fe, Cr) prepared by sol-gel method. Revista mexicana de física, 64(4), pp.381-391.
[20] Shanker, J., Venkataramana, K., Prasad, B.V., Kumar, R.V. and Babu, D.S., 2018. Influence of Fe substitution on structural and electrical properties of Gd orthochromite ceramics. Journal of Alloys and Compounds, 732, pp.314-327.
[21] Somvanshi, A., Husain, S. and Khan, W., 2019. Investigation of structure and physical properties of cobalt doped nano-crystalline neodymium orthoferrite. Journal of Alloys and Compounds, 778, pp.439-451.
[22] Orlinski, K., Diduszko, R., Kopcewicz, M. and Pawlak, D.A., 2017. The influence of chromium substitution on crystal structure and shift of Néel transition in GdFe1− xCrxO3 mixed oxides. Journal of Thermal Analysis and Calorimetry, 127(1), pp.181-187.
[23] Nithya, V.D., Immanuel, R.J., Senthilkumar, S.T., Sanjeeviraja, C., Perelshtein, I., Zitoun, D. and Selvan, R.K., 2012. Studies on the structural, electrical and magnetic properties of LaCrO3, LaCr0.5Cu0.5O3 and LaCr0.5Fe0.5O3 by sol–gel method. Materials Research Bulletin, 47(8), pp.1861-1868.
[24] Nforna, E.A., Tsobnang, P.K., Fomekong, R.L., Tedjieukeng, H.M.K., Lambi, J.N. and Ghogomu, J.N., 2021. Effect of B-site Co substitution on the structure and magnetic properties of nanocrystalline neodymium orthoferrite synthesized by auto-combustion. Royal Society Open Science, 8(2), p.201883.
[25] Selvadurai, A.P.B., Pazhanivelu, V., Jagadeeshwaran, C., Murugaraj, R., Muthuselvam, I.P. and Chou, F.C., 2015. Influence of Cr substitution on structural, magnetic and electrical conductivity spectra of LaFeO3. Journal of Alloys and Compounds, 646, pp.924-931.
[26] Suthar, L., Bhadala, F., Kumari, P., Mishra, S.K. and Roy, M., 2021. Effect of Mn substitution on crystal structure and electrical behaviour of YFeO3 ceramic. Ceramics International, 47(13), pp.19007-19018.
[27] Mguedla, R., Kharrat, A.B.J., Saadi, M., Khirouni, K., Chniba-Boudjada, N. and Boujelben, W., 2020. Structural, electrical, dielectric and optical properties of PrCrO3 ortho-chromite. Journal of Alloys and Compounds, 812, p.152130.
[28] Sharma, M.K., Basu, T., Mukherjee, K. and Sampathkumaran, E.V., 2016. Effect of rare-earth (Er and Gd) substitution on the magnetic and multiferroic properties of DyFe0.5Cr0.5O3. Journal of Physics: Condensed Matter, 28(42), p.426003.
[29] Kotnana, G., 2018. Magnetic properties and their correlation with lattice dynamics in HoFe1-xCrxO3 (0≤ x≤ 1) compounds (Doctoral dissertation, Indian Institute of Technology Hyderabad).
[30] Shanker, J., Prasad, B.V., Suresh, M.B., Kumar, R.V. and Babu, D.S., 2017. Electrical properties of NdCr1-xFexO3 perovskite ceramic nanoparticles—An impedance spectroscopy studies. Materials Research Bulletin, 94, pp.385-398.
[31] Singh, D., Gupta, S. and Mahajan, A., 2016. Structural and composition dependent transport properties of perovskite oxides La0.8R0.2Fe0.5Cr0.5O3 (R= La, Nd, Gd and Dy). Ceramics International, 42(9), pp.11020-11024.
[32] Gholizadeh, A. and Hosseini, S., 2026. Structural and Magnetic Phase Transitions in Cu1-3xZn2xMnxFe2O4 Ferrites. Progress in Physics of Applied Materials, 6(1), pp.1-13.
[33] Admi, R.I., Kurniawan, B., Saptari, S.A., Yudharma, G. and Munazat, D.R., 2024. Effect of Sintering Temperature on Phase Characteristic and Grain Size of La0.7AE0.3MnO3 (AE= Ba/Ca/Sr) Ceramics Prepared by Sol-Gel Method. Progress in Physics of Applied Materials, 4(1), pp.93-101.
[34] Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Foundations of Crystallography, 32(5), pp.751-767.
[35] Martínez-Lope, M.J., Alonso, J.A., Retuerto, M. and Fernández-Díaz, M.T., 2008. Evolution of the crystal structure of RVO3 (R= La, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu, Y) perovskites from neutron powder diffraction data. Inorganic chemistry, 47(7), pp.2634-2640.
[36] Rahimkhani, M., Khoshnoud, D.S. and Ehsani, M.H., 2018. Origin of enhanced multiferroic properties in Bi0. 85−xLa0.15HoxFeO3 nanopowders. Journal of Magnetism and Magnetic Materials, 449, pp.538-544.
[37] Mohamed, M.B., Wang, H. and Fuess, H., 2010. Dielectric relaxation and magnetic properties of Cr doped GaFeO3. Journal of Physics D: Applied Physics, 43(45), p.455409.
[38] Bora, T. and Ravi, S., 2013. Study of magnetization reversal in LaCr1−xFexO3 compounds. Journal of Applied Physics, 114(3).
[39] Aparnadevi, N., Saravana Kumar, K., Manikandan, M., Paul Joseph, D. and Venkateswaran, C., 2016. Room temperature dual ferroic behaviour of ball mill synthesized NdFeO3 orthoferrite. Journal of Applied Physics, 120(3).
[40] Bhuyan, M.D.I., Das, S. and Basith, M.A., 2021. Sol-gel synthesized double perovskite Gd2FeCrO6 nanoparticles: structural, magnetic and optical properties. Journal of Alloys and Compounds, 878, p.160389.
[41] Moskvin, A.S., Ovanesyan, N.S. and Trukhtanov, V.A., 1975. Angular dependence of the superexchange interactionFe3+-O2−-Cr3+. Hyperfine Interactions, 1(1), pp.265-281.
[42] Xiang, Z., Li, W. and Cui, Y., 2018. Intrinsic structural distortion and exchange interactions in SmFexCr1− xO3 compounds. RSC advances, 8(16), pp.8842-8848.
[43] Zhou, J.S., Alonso, J.A., Pomjakushin, V., Goodenough, J.B., Ren, Y., Yan, J.Q. and Cheng, J.G., 2010. Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth perovskites RCrO 3. Physical Review B—Condensed Matter and Materials Physics, 81(21), p.214115.
[44] Zhou, J.S. and Goodenough, J.B., 2008. Intrinsic structural distortion in orthorhombic perovskite oxides. Physical Review B—Condensed Matter and Materials Physics, 77(13), p.132104.
[45] Jonscher, A.K., 1999. Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32(14), p.R57.
[46] Zriouil, M., Lahmar, A., Antic-Fidancev, E., Ashehoug, P., Fukami, T. and Elouadi, B., 2008. STRUCTURE, DIELECTRIC AND SPECTROSCOPIC INVESTIGATION OF (Sr1-xNax) 0.8 (K1-xLnx) 0.4Nb2O6 WITH (Ln= Nd, Eu). Physical & chemical news, (44), pp.96-102.
[47] Shanker, J., Suresh, M.B., Saravanan, P. and Babu, D.S., 2019. Effects of Fe substitution on structural, electrical and magnetic properties of erbium ortho-chromite nano polycrystalline material. Journal of Magnetism and Magnetic Materials, 477, pp.167-181.
[48] Huang, S., Shi, L., Tian, Z., Yuan, S., Wang, L., Gong, G., Yin, C. and Zerihun, G., 2015. High-temperature colossal dielectric response in RFeO3 (R= La, Pr and Sm) ceramics. Ceramics International, 41(1), pp.691-698.
[49] Megdiche, M., Perrin-Pellegrino, C. and Gargouri, M., 2014. Conduction mechanism study by overlapping large-polaron tunnelling model in SrNiP2O7 ceramic compound. Journal of alloys and compounds, 584, pp.209-215.
[50] Omri, A., Bejar, M., Dhahri, E., Es-Souni, M., Valente, M.A., Graça, M.P.F. and Costa, L.C., 2012. Electrical conductivity and dielectric analysis of La0.75(Ca, Sr)0.25 Mn0.85Ga0.15O3 perovskite compound. Journal of alloys and compounds, 536, pp.173-178.
[51] Ramu, N., Meera, K., Ranjith, R. and Muralidharan, R., 2018. The role of B-site substitution on the structural and dielectric properties of samarium orthoferrite polycrystals. Materials Research Express, 6(3), p.036106.
[52] Dhahri, A., Dhahri, E. and Hlil, E.K., 2018. Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. Rsc Advances, 8(17), pp.9103-9111.