Structural, Magnetic, and Electrical Properties of REFe0.7Cr0.3O3 (RE= La, Pr, Nd, Sm, and Gd) Compounds

Document Type : Original Article

Authors

Faculty of Physics, Semnan University P. O. Box 35195-363, Semnan, Iran

Abstract

In this research, crystal information, magnetic, and electrical properties of REFe0.7Cr0.3O3 nanoparticles were investigated via X-ray diffraction data, field-emission scanning electron microscopy images, magnetic hysteresis loops and dielectric measurements, respectively. All samples were synthesized by the sol-gel method. Results related to powder X-ray diffraction indicate that all samples are single-phase and crystallize in orthorhombic symmetry with Pbnm space group. By varying the rare earth (RE) ions from La to Gd, the unit cell volume decreases due to the reduction in the RE ionic radius. All samples display a weak ferromagnetic behavior with low remanent magnetization and coercivity field. The Néel transition temperature of the studied samples was determined by the temperature dependence of their magnetization. Results reveal that the Néel temperature values decrease from 583 K to 498 K with decreasing ionic radius of the RE ions. The frequency dependence of the dielectric constant in all samples follows the Maxwell-Wagner polarization model. The high dielectric constant at low frequencies emphasized the polarization mechanism associated with space charges. The LaFe0.7Cr0.3O3 sample exhibits a colossal dielectric constant in the low-frequency range at room temperature, which can be played play a significant role in miniaturizing electronic components and fabricating high-capacitance dielectric capacitors. The frequency dependence of ac conductivity indicates a small polaron hopping mechanism. To clarify the transport mechanism for of the REFe0.7Cr0.3O3 samples, the variations of direct electrical conductivity versus temperature were studied, which revealed a semiconducting nature.

Keywords

Main Subjects


© 2025 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Pecovska-Gjorgjevich, M., Aleksovska, S., Dimitrovska-Lazova, S. and Marinšek, M., 2016. The role of Cr/Co substitution on dielectric properties of gadolinium orthochromite. Physica Scripta91(4), p.045805.
[2] Li, K., Wang, D., Wu, F., Xie, T. and Li, T., 2000. Surface electronic states and photovoltage gas-sensitive characters of nanocrystalline LaFeO3Materials chemistry and physics64(3), pp.269-272.
[3] Li, X., Tang, C., Ai, M., Dong, L. and Xu, Z., 2010. Controllable synthesis of pure-phase rare-earth orthoferrites hollow spheres with a porous shell and their catalytic performance for the CO+ NO reaction. Chemistry of Materials22(17), pp.4879-4889.
[4] Arabi, A., Fazli, M. and Ehsani, M.H., 2022. Photocatalytic activity of the La0.7Ca0.3MnO3 nanorods. Progress in Physics of Applied Materials2(2), pp.123-131.
[5] Jeong, Y.K., Lee, J.H., Ahn, S.J. and Jang, H.M., 2012. Temperature-induced magnetization reversal and ultra-fast magnetic switch at low field in SmFeO3Solid state communications152(13), pp.1112-1115.
[6] Ahmad, I., Akhtar, M.J., Younas, M., Siddique, M. and Hasan, M.M., 2012. Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO3Journal of Applied Physics112(7).
[7] Wang, Z.Q., Lan, Y.S., Zeng, Z.Y., Chen, X.R. and Chen, Q.F., 2019. Magnetic structures and optical properties of rare-earth orthoferrites RFeO3 (R= Ho, Er, Tm and Lu). Solid State Communications288, pp.10-17.
[8] Kamal Warshi, M., Mishra, V., Sagdeo, A., Mishra, V., Kumar, R. and Sagdeo, P.R., 2018. Synthesis and characterization of RFeO3: experimental results and theoretical prediction. Advances in Materials and Processing Technologies4(4), pp.558-572.
[9] Lee, J.H., Jeong, Y.K., Park, J.H., Oak, M.A., Jang, H.M., Son, J.Y. and Scott, J.F., 2011. Spin-Canting-Induced Improper Ferroelectricity and Spontaneous Magnetization Reversal in SmFeO3Physical review letters107(11), p.117201.
[10]  Nakhaei, M. and Khoshnoud, D.S., 2019. Influence of particle size and lattice distortion on magnetic and dielectric properties of NdFeO3 orthoferrite. Physica B: Condensed Matter553, pp.53-58.
[11] Nakhaei, M. and Khoshnoud, D.S., 2021. Structural,   magnetic, and electrical properties of RFeO3 (R= Dy, Ho, Yb & Lu) compounds. Journal of Materials Science: Materials in Electronics32(11), pp.14286-14300.
[12] Nakhaei, M. and Khoshnoud, D.S., 2021. Study on structural, magnetic and electrical properties of ReFeO3 (Re= La, Pr, Nd, Sm & Gd) orthoferrites. Physica B: Condensed Matter612, p.412899.
[13] Dehno, R.T. and Khoshnoud, D.S., 2022. Multiferroic properties in Sm1-xErxFeO3 ceramics. Journal of Magnetism and Magnetic Materials541, p.168515.
[14]  Ghasemi, E. and Khoshnoud, D.S., 2025. The effect of Mg doping on spin reorientation transition and physical properties of SmFeO3Journal of Materials Science: Materials in Electronics36(5), p.304.
[15]  Kashyap, S.J., Sankannavar, R. and Madhu, G.M., 2022. Insights on the various structural, optical and dielectric characteristics of La1-xcaxFeO3 perovskite-type oxides synthesized through solution-combustion technique. Applied Physics A128(6), p.518.
[16]  Huang, L., Cheng, L., Pan, S., Yao, Q., Long, Q., Wang, M., Chen, Y. and Zhou, H., 2022. Influence of A-site doping barium on structure, magnetic and microwave absorption properties of LaFeO3 ceramics powders. Journal of Rare Earths40(7), pp.1106-1117.
[17] Makoed, I.I., Liedienov, N.A., Pashchenko, A.V., Levchenko, G.G., Tatarchuk, D.D., Didenko, Y.V., Amirov, A.A., Rimski, G.S. and Yanushkevich, K.I., 2020. Influence of rare-earth doping on the structural and dielectric properties of orthoferrite La0.50R0.50FeO3 ceramics synthesized under high pressure. Journal of Alloys and Compounds842, p.155859.
[18]  Ruffo, A., Mozzati, M.C., Albini, B., Galinetto, P. and Bini, M., 2020. Role of non-magnetic dopants (Ca, Mg) in GdFeO3 perovskite nanoparticles obtained by different synthetic methods: structural, morphological and magnetic properties. Journal of Materials Science: Materials in Electronics31(20), pp.18263-18277..
[19] Tufiq Jamil, M., Ahmad, J., Hamad Bukhari, S. and Saleem, M., 2018. Effect of Re and Tm-site on morphology structure and optical band gap of ReTmO3 (Re= La, Ce Nd, Gd, Dy, Y and Tm= Fe, Cr) prepared by sol-gel method. Revista mexicana de física64(4), pp.381-391.
[20] Shanker, J., Venkataramana, K., Prasad, B.V., Kumar, R.V. and Babu, D.S., 2018. Influence of Fe substitution on structural and electrical properties of Gd orthochromite ceramics. Journal of Alloys and Compounds732, pp.314-327.
[21] Somvanshi, A., Husain, S. and Khan, W., 2019. Investigation of structure and physical properties of cobalt doped nano-crystalline neodymium orthoferrite. Journal of Alloys and Compounds778, pp.439-451.
[22] Orlinski, K., Diduszko, R., Kopcewicz, M. and Pawlak, D.A., 2017. The influence of chromium substitution on crystal structure and shift of Néel transition in GdFe1− xCrxO3 mixed oxides. Journal of Thermal Analysis and Calorimetry127(1), pp.181-187.
[23] Nithya, V.D., Immanuel, R.J., Senthilkumar, S.T., Sanjeeviraja, C., Perelshtein, I., Zitoun, D. and Selvan, R.K., 2012. Studies on the structural, electrical and magnetic properties of LaCrO3, LaCr0.5Cu0.5O3 and LaCr0.5Fe0.5O3 by sol–gel method. Materials Research Bulletin47(8), pp.1861-1868.
[24] Nforna, E.A., Tsobnang, P.K., Fomekong, R.L., Tedjieukeng, H.M.K., Lambi, J.N. and Ghogomu, J.N., 2021. Effect of B-site Co substitution on the structure and magnetic properties of nanocrystalline neodymium orthoferrite synthesized by auto-combustion. Royal Society Open Science8(2), p.201883.
[25]  Selvadurai, A.P.B., Pazhanivelu, V., Jagadeeshwaran, C., Murugaraj, R., Muthuselvam, I.P. and Chou, F.C., 2015. Influence of Cr substitution on structural, magnetic and electrical conductivity spectra of LaFeO3Journal of Alloys and Compounds646, pp.924-931.
[26]  Suthar, L., Bhadala, F., Kumari, P., Mishra, S.K. and Roy, M., 2021. Effect of Mn substitution on crystal structure and electrical behaviour of YFeO3 ceramic. Ceramics International47(13), pp.19007-19018.
[27] Mguedla, R., Kharrat, A.B.J., Saadi, M., Khirouni, K., Chniba-Boudjada, N. and Boujelben, W., 2020. Structural, electrical, dielectric and optical properties of PrCrO3 ortho-chromite. Journal of Alloys and Compounds812, p.152130.
[28] Sharma, M.K., Basu, T., Mukherjee, K. and Sampathkumaran, E.V., 2016. Effect of rare-earth (Er and Gd) substitution on the magnetic and multiferroic properties of DyFe0.5Cr0.5O3Journal of Physics: Condensed Matter28(42), p.426003.
[29] Kotnana, G., 2018. Magnetic properties and their correlation with lattice dynamics in HoFe1-xCrxO3 (0≤ x≤ 1) compounds (Doctoral dissertation, Indian Institute of Technology Hyderabad).
[30] Shanker, J., Prasad, B.V., Suresh, M.B., Kumar, R.V. and Babu, D.S., 2017. Electrical properties of NdCr1-xFexO3 perovskite ceramic nanoparticles—An impedance spectroscopy studies. Materials Research Bulletin94, pp.385-398.
[31] Singh, D., Gupta, S. and Mahajan, A., 2016. Structural and composition dependent transport properties of perovskite oxides La0.8R0.2Fe0.5Cr0.5O3 (R= La, Nd, Gd and Dy). Ceramics International42(9), pp.11020-11024.
[32] Gholizadeh, A. and Hosseini, S., 2026. Structural and Magnetic Phase Transitions in Cu1-3xZn2xMnxFe2O4 Ferrites. Progress in Physics of Applied Materials6(1), pp.1-13.
[33] Admi, R.I., Kurniawan, B., Saptari, S.A., Yudharma, G. and Munazat, D.R., 2024. Effect of Sintering Temperature on Phase Characteristic and Grain Size of La0.7AE0.3MnO3 (AE= Ba/Ca/Sr) Ceramics Prepared by Sol-Gel Method. Progress in Physics of Applied Materials4(1), pp.93-101.
[34] Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Foundations of Crystallography32(5), pp.751-767.
[35] Martínez-Lope, M.J., Alonso, J.A., Retuerto, M. and Fernández-Díaz, M.T., 2008. Evolution of the crystal structure of RVO3 (R= La, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu, Y) perovskites from neutron powder diffraction data. Inorganic chemistry47(7), pp.2634-2640.
[36] Rahimkhani, M., Khoshnoud, D.S. and Ehsani, M.H., 2018. Origin of enhanced multiferroic properties in Bi0. 85−xLa0.15HoxFeO3 nanopowders. Journal of Magnetism and Magnetic Materials449, pp.538-544.
[37] Mohamed, M.B., Wang, H. and Fuess, H., 2010. Dielectric relaxation and magnetic properties of Cr doped GaFeO3Journal of Physics D: Applied Physics43(45), p.455409.
[38] Bora, T. and Ravi, S., 2013. Study of magnetization reversal in LaCr1−xFexO3 compounds. Journal of Applied Physics114(3).
[39] Aparnadevi, N., Saravana Kumar, K., Manikandan, M., Paul Joseph, D. and Venkateswaran, C., 2016. Room temperature dual ferroic behaviour of ball mill synthesized NdFeO3 orthoferrite. Journal of Applied Physics120(3).
[40] Bhuyan, M.D.I., Das, S. and Basith, M.A., 2021. Sol-gel synthesized double perovskite Gd2FeCrO6 nanoparticles: structural, magnetic and optical properties. Journal of Alloys and Compounds878, p.160389.
[41] Moskvin, A.S., Ovanesyan, N.S. and Trukhtanov, V.A., 1975. Angular dependence of the superexchange interactionFe3+-O2−-Cr3+Hyperfine Interactions1(1), pp.265-281.
[42] Xiang, Z., Li, W. and Cui, Y., 2018. Intrinsic structural distortion and exchange interactions in SmFexCr1− xO3 compounds. RSC advances8(16), pp.8842-8848.
[43] Zhou, J.S., Alonso, J.A., Pomjakushin, V., Goodenough, J.B., Ren, Y., Yan, J.Q. and Cheng, J.G., 2010. Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth perovskites RCrO 3Physical Review B—Condensed Matter and Materials Physics81(21), p.214115.
[44] Zhou, J.S. and Goodenough, J.B., 2008. Intrinsic structural distortion in orthorhombic perovskite oxides. Physical Review B—Condensed Matter and Materials Physics77(13), p.132104.
[45] Jonscher, A.K., 1999. Dielectric relaxation in solids. Journal of Physics D: Applied Physics32(14), p.R57.
[46] Zriouil, M., Lahmar, A., Antic-Fidancev, E., Ashehoug, P., Fukami, T. and Elouadi, B., 2008. STRUCTURE, DIELECTRIC AND SPECTROSCOPIC INVESTIGATION OF (Sr1-xNax) 0.8 (K1-xLnx) 0.4Nb2O6 WITH (Ln= Nd, Eu). Physical & chemical news, (44), pp.96-102.
[47] Shanker, J., Suresh, M.B., Saravanan, P. and Babu, D.S., 2019. Effects of Fe substitution on structural, electrical and magnetic properties of erbium ortho-chromite nano polycrystalline material. Journal of Magnetism and Magnetic Materials477, pp.167-181.
[48] Huang, S., Shi, L., Tian, Z., Yuan, S., Wang, L., Gong, G., Yin, C. and Zerihun, G., 2015. High-temperature colossal dielectric response in RFeO3 (R= La, Pr and Sm) ceramics. Ceramics International41(1), pp.691-698.
[49] Megdiche, M., Perrin-Pellegrino, C. and Gargouri, M., 2014. Conduction mechanism study by overlapping large-polaron tunnelling model in SrNiP2O7 ceramic compound. Journal of alloys and compounds584, pp.209-215.
[50] Omri, A., Bejar, M., Dhahri, E., Es-Souni, M., Valente, M.A., Graça, M.P.F. and Costa, L.C., 2012. Electrical conductivity and dielectric analysis of La0.75(Ca, Sr)0.25 Mn0.85Ga0.15O3 perovskite compound. Journal of alloys and compounds536, pp.173-178.
[51] Ramu, N., Meera, K., Ranjith, R. and Muralidharan, R., 2018. The role of B-site substitution on the structural and dielectric properties of samarium orthoferrite polycrystals. Materials Research Express6(3), p.036106.
[52] Dhahri, A., Dhahri, E. and Hlil, E.K., 2018. Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3Rsc Advances8(17), pp.9103-9111.