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A Gaussian wave-packet quantum tunneling across a one-dimensional double-barrier structure has 

been explored in order to obtain the spin-based transport coefficients. We have used a split-step finite 

difference method to solve the resulting nonlinear coupled Schrodinger equations. The related 

behavior of scattering properties of the system as a function of the geometry of the barriers in the 

presence of Rashba and Dresselhaus spin-orbit interactions for High-energy and low-energy wave- 

packets have been compared. Evidence showed that the presence of Rashba or Dresselhaus SOIs leads 

to considerable spin polarization in the wave-packet components. Based on the results, it is found 

that the wave-packet velocity plays a significant role in the tunneling process of the Gaussian wave- 

packet through quantum barriers. In addition, by tuning the Rashba and the Dresselhaus coupling 

strengths, the energy of the wave-packet, and the characteristics of the system, one can control the 

spin polarization of the wave-packet and its propagation coefficients. 
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1. Introduction 

Potential barriers can be the fundamental building 
blocks of advanced nanoscale nano-electronic and 
optoelectronic devices. Nowadays, with the advent of 
modern semiconductor growth technologies such as 
molecular beam epitaxy, it has become possible to fabricate 
high-accuracy semiconducting heterostructures based on 
barriers and wells of arbitrary shapes [1]. Therefore, a 
thorough theoretical investigation of a wave-packet 
propagating through such semiconductor nanostructures 
may facilitate the manufacture of nanoscale devices. Solving 
the time-dependent nonlinear Schrodinger equation 
(TDNSE) for an incident wave-packet on a quantum barrier 
can be a powerful tool to study the time evolution of the 
wave-packet in low dimensional quantum systems. Since 
analytical solutions of the TDNSE for an arbitrary-shaped 
potential profile are not available, one has to use 
approximate methods to evaluate its numerical solutions. 

For this purpose, various numerical approaches, including 
the split-step finite difference method [2-4], split-step 
Fourier method [5], quadratic b-spline finite element 
method [6], finite element method [7-8], discontinuous 
Galerkin method [9], 4th order Runge–Kutta method [10], 
etc. have been developed. 

Various studies were conducted in this research area in 
order to investigate the propagation properties of wave 
packets traveling through semiconducting heterostructures. 
The first attempt to study wave-packet tunneling through 
potential barriers was MacColl’s work, in which the first 
exact solution of the time-dependent Schrodinger equation 
for a wave-packet impinging on a square potential barrier 
has been presented [11]. A few decades later, Jauho and 
Nieto [12] studied the time-dependent tunneling of wave- 
packets through heterostructures and analyzed the effect of 
the initial wave-packet form on the scattering properties of 
the system. Afterward, the influence of a transverse 
magnetic field on the tunneling properties of a spin-less 
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Gaussian wave-packet through a square barrier has been 
investigated [13]. The results indicated that the 
transmission and reflection coefficients of the potential 
barrier are field-dependent. Later, Luis et al. [14,15] 
numerically solved the effective-mass nonlinear 
Schrodinger equation for an electron wave packet in a 
coupled quantum-well system. The results have shown that 
the wave packet has dynamically been trapped in both 
wells. They have also studied how electron-electron and 
exchange interactions can affect tunneling processes. So far, 
the problems of wave-packet tunneling through rectangular 
and trapezoidal-shaped potential profiles [16], through the 
time-modulated barrier, [17-19] through a triple-barrier 
system, [20] and a reflection-less potential barrier [21] have 
also been examined in detail. However, the time-dependent 
tunneling of wave-packets through asymmetric 
heterostructures has attracted considerably less attention, 
and hence more work is needed in this field of research. 

Since in the nonmagnetic multilayered heterostructures, 
large spin polarization can induce due to the Spin-Orbit 
interaction (SOI) [22], the effect of SOI has to be taken into 
account in the calculation of scattering properties. Two 
different mechanisms in the mesoscopic semiconductors can 
lead to SOI in the absence of external magnetic fields. The 
structural inversion asymmetry (SIA) of the system causes 
the Rashba SOI [23], and the bulk inversion asymmetry 
(BIA) of the system causes the Dresselhaus SOI [24]. Cruz 
and Luis [25] have studied the time-dependent evolution of 
an electron wave-packet in a triple quantum well system. 
The Rashba SOI, as well as the electron-electron interaction 
in their calculations, is considered. Their investigation 
demonstrated that after tunneling through a spin- 
dependent potential barrier, an initial un-polarized wave 
packet splits into two spin-up and spin-down wave packets. 
Dakhlaoui et al. [26] have investigated spin-dependent 
transmission and spin polarization of heterostructures 
based on accelerating triple barriers using the transfer 
matrix method while considering the Rashba SOI. Their 
findings showed that the wave-packet energy and the 
system size have an essential effect on the transmission 
coefficient and the spin polarization of the heterostructure. 
They have also studied the impact of applied magnetic field 
on spin polarization and showed that it could polarize either 
spin-up or down electrons [27]. Solaimani and Izadifard 
have studied the spin polarization efficiency and spin- 
dependent transmission of electrons tunneling through a 
semiconductor built of multiple quantum wells using the 
quantum transmitting boundary method while taking into 

comparing the behavior of transport properties of high- 
speed and low-speed wave packets can help better 
understand the tunneling phenomenon in semiconducting 
materials. We have solved the resulting coupled nonlinear 
Schrodinger equations using a split-step finite difference 
method. This work aims to compare how the magnitude of 
the Rashba coefficient, the magnitude of the Dresselhaus 
coefficient, and the height and the width of the potential 
barriers, can affect the scattering properties of high-energy 
and low-energy wave packets in a potential double-barrier. 
The effect of Dresselhaus and Rashba SOIs in the 
asymmetric heterostructures can be favorably engineered 
for fabricating spintronic devices based on double-barrier 
non-magnetic semiconductors [29]. Therefore, this study 
may be helpful in the design of new devices in the future 
spintronic industry. 

 
 

2. Formalism 

We start with the following three-dimensional time- 
dependent Schrodinger equation: 

 
 

𝑖ℏ 
 𝛛  
𝜙(𝑥, 𝑦, 𝑧, 𝑡) = − 

 ℏ2  

∇2𝜙(𝑥, 𝑦, 𝑧, 𝑡) + 
𝛛𝑡 2𝑚 

𝑉(𝑥)𝜙(𝑥, 𝑦, 𝑧, 𝑡) + 𝑄|𝜙|2𝜙(𝑥, 𝑦, 𝑧, 𝑡) + 𝐻𝑅/𝐷𝜙(𝑥, 𝑦, 𝑧, 𝑡) 
(1) 

where ℏ is the Planck constant divided by 2π, 𝑉(𝑥) is the 
potential profile, 𝑄|𝜙|2 represents the potential given by 
the electron-electron interaction in the heterostructure 
region (a nonlinear interaction) [30-32], and 𝐻𝑅/𝐷 indicates 

the Rashba or the Dresselhaus Spin-Orbit interaction. The 
effect of each Spin-Orbit interaction on the behavior of the 
high-speed and low-speed wave-packets is studied 
independently. 

2.1 Rashba Spin-Orbit interaction 

In the presence of the Rashba Spin-Orbit interaction the 
Schrodinger equation is rewritten as 

 
2 

𝑖ℏ 
𝛛 
𝜙(𝑥, 𝑦, 𝑧, 𝑡) = − 

ℏ  
𝛻2𝜙(𝑥, 𝑦, 𝑧, 𝑡) + 

𝛛𝑡 2𝑚 
𝑉(𝑥)𝜙(𝑥, 𝑦, 𝑧, 𝑡) + 𝑄|𝜙|2𝜙(𝑥, 𝑦, 𝑧, 𝑡) + 

𝛼 
(𝜎 𝑃 − 

ℏ 𝑥 𝑦 

𝜎𝑦𝑃𝑥)𝜙(𝑥, 𝑦, 𝑧, 𝑡) 

 
(2) 

 
where 𝛼 (𝜎 𝑃 − 𝜎 𝑃 ) indicates the Rashba Spin-Orbit 

ℏ 𝑥 𝑦 𝑦 𝑥 

account the Dresselhaus SOI [28]. They have found that the 
number of wells in the structure plays the role of a tuning 
tool for spin filtering. However, the effect of the Dresselhaus 
SOI on the scattering properties of asymmetric 
heterostructures received little attention. 

In the present work, we have compared the scattering 
properties of high-speed and low-speed spin-dependent 
wave packets tunneling through one-dimensional double 
rectangular potential barriers in the presence of the Rashba 
and the Dresselhaus SOIs, as well as the electron-electron 
interactions. The results we gained in our previous work 
have indicated that low-energy wave packets cannot 
transmit through a double-barrier. By contrast, high-energy 
wave packets are almost entirely transmitted. As a result, 

interaction term with strength 𝛼 [33,34], and 𝜎𝑥 and 𝜎𝑦 are 

the Pauli matrices along 𝑥 and 𝑦 directions, respectively. 
Also 𝑃𝑥 and 𝑃𝑦 are the momentum operator components 

along 𝑥 and 𝑦 directions. Eq. (2) is a three-dimensional 
partial differential equation, the numerical solution of 
which is quite demanding indeed. We assume 𝜙(𝑥, 𝑦, 𝑧, 𝑡) 
as the separable function [35] 

 
𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝜓(𝑥, 𝑡)𝑒−𝑖𝑘𝑦𝑦𝑒−𝑖𝑘𝑧𝑧 (3) 

 
Where 𝑘𝑦 and 𝑘𝑧 are the y and z direction wave-vector 

components. Now, we can reduce equation (2) to a one- 
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dimensional ordinary differential equation by substituting 
(3) into (2). 

  

 
 

   

 

 

 

Here we have defined the in-plane wave-vector 𝑘→
∥  ≡ 

where 𝑎 is the total system size. 
We assume the following initial condition to solve the 

resulting coupled equations. 

𝑘𝑦 𝑦  + 𝑘𝑧𝑧 , which  represents  the  component  of  the 

wavevector in the plane of the layers. In the limit of 𝑘→
∥  = 0 

we can rewrite the Eq. (4) as, 
 

 

 
 

 
This is a traveling Gaussian wave-packet at 𝑡 = 0, 

where, 𝑥0 is the center of the wave-packet, 𝜎 determines 
the width of the wave-packet, 𝑘𝑥 shows the wave-packet 
wave-vector and we have |𝑐 |2 + |𝑐 |2 = 1. Case of 𝑐 = 𝑐 

↑ ↓ ↑ ↓ 

 

 
Then, assuming 

 
 

 
𝜓↑ 

𝜓 = [ 
𝜓↓ 

 

 
] in which 𝜓↑ and 𝜓↓ are the 

represents an un-polarized state and case of 𝑐↑ = 1 , 𝑐↓ = 0 
represents a fully polarized state. We aim to evaluate 
𝜓(𝑥, 𝑡 > 0) and we have computed it by using the split-step 
finite difference (SSFD) method. 

wave-functions for spin-up and spin-down wave-packets, 
we have, 

 

 

 
 

 

2.2 Dresselhaus Spin-Orbit Interaction 

In the case of Dresselhaus Spin-Orbit interaction, the 
Schrodinger equation changes as 

 
iℏ 

𝛛 
𝛟(x, y, z, t) = − 

ℏ2 

∇2𝛟(x, y, z, t) + 
𝛛t 2m 

V(x)𝛟(x, y, z, t) + Q|𝛟|2𝛟(x, y, z, t) + 
β 
(σ P − 

ℏ x x 

σyPy)𝛟(x, y, z, t) 

 
(7) 

 
Where 𝛽 (𝜎 𝑃 − 𝜎 𝑃 ) indicates the Dresselhaus Spin- 

 

 
Now, we use three physical observables, reflection 
coefficient (R), trapping coefficient (L), and transmission 
coefficient (T) of the wave-packet in order to investigate 
the behavior of the assumed system. We have calculated 
them at a time well after the initial wave-packet incidence 
on the double-barrier through, 

 
−𝐿𝑒𝑓𝑓⁄2 

𝑅 = ∫ 𝑑𝑥|𝜓(𝑥, 𝑡)|2 
−∞ 

(11-1) 

𝐿𝑒𝑓𝑓⁄2 

𝐿 = ∫ 𝑑𝑥|𝜓(𝑥, 𝑡)|2 
−𝐿𝑒𝑓𝑓⁄2 

 
(11-2) 

∞ 

𝑇 = ∫ 𝑑𝑥|𝜓(𝑥, 𝑡)|2 
𝐿𝑒𝑓𝑓⁄2 

 
(11-3) 

 
Where 𝐿𝑒𝑓𝑓 is the region size in which the barriers are 

present and 𝑅 + 𝐿 + 𝑇 = 1. If we use the spin-up (down) 
components of the wave-packet in equations (11), we will 

ℏ 𝑥 𝑥 𝑦 𝑦 

Orbit interaction term with strength 𝛽 [36]. By substituting 

(3) into (7), in the limit of 𝑘→
⊥  = 0, and by assuming 𝜓 = 

[
𝜓↑] similarly to the Rashba case, this equation reduces to 

find the spin-up (down) reflection, trapping, and 
transmission coefficients. However, the total transmission 
coefficient can be obtained by using the term |𝜓|2 = |𝜓 |2 + |𝜓 |2 in the equations (11). 

𝜓↓ ↑ ↓ 

 
 

 

 
2. 3 Numerical Solution 

Equations (6) and (8) are two coupled nonlinear 
Schrodinger equations which we want to solve by using the 
Split-Step Finite Difference Method with the rigid boundary 
condition, 

3. Results and discussion 
In this research, we have compared the propagation 

properties of high-speed and low-speed spin-polarized 
Gaussian wave-packets through a one-dimensional 
rectangular quantum double-barrier in the presence of the 
Rashba SOI, the Dresselhaus SOI as well as the electron- 
electron interaction. For this purpose, we have calculated 
the spin-dependent tunneling properties of the system 
using Eqs. (11). We have used a numerical split-step finite 
difference method to perform the required calculations. 
Then we studied the effect of various parameters, including 
the Rashba coupling strength, the Dresselhaus coupling 
strength, the barrier height, the barrier width, and the 
incident wave-packet velocity on the scattering properties 
of the system. For the sake of simplicity, we have used the 

𝛛 ℏ2 𝛛2 ℏ2(𝑘2+𝑘2) 
𝑖ℏ 𝜓(𝑥, 𝑡) = − 𝜓(𝑥, 𝑡) + 𝑦  𝑧 𝜓(𝑥, 𝑡) + 

𝛛𝑡 2𝑚 𝛛𝑥2 2𝑚 

𝑉(𝑥)𝜓(𝑥, 𝑡) + 𝑄|𝜓(𝑥, 𝑡)|2𝜓(𝑥, 𝑡) + 𝛼𝜎𝑥𝑘𝑦𝜓(𝑥, 𝑡) − 

𝑖𝛼𝜎 
𝛛𝜓(𝑥,𝑡) 

𝑦  𝛛𝑥 

 
(4) 

 

2  2 

𝑖ℏ 
𝛛 
𝜓(𝑥, 𝑡) = − 

ℏ  𝛛  
𝜓(𝑥, 𝑡) + 𝑉(𝑥)𝜓(𝑥, 𝑡) + 

𝛛𝑡 2𝑚 𝛛𝑥2 

𝑄|𝜓(𝑥, 𝑡)|2𝜓(𝑥, 𝑡) − 𝑖𝛼𝜎 
𝜕𝜓(𝑥,𝑡)

 
𝑦  𝛛𝑥 

(5) 

 

𝜕𝜓↑ ℏ2 𝜕2𝜓↑ 𝜕𝜓↓ 
⎛𝑖ℏ = − 2 + 𝑉(𝑥)𝜓↑ + 𝑄|𝜓|2𝜓↑ − 𝛼 

𝜕𝑡 2𝑚 𝜕𝑥 𝜕𝑥 
⎨  𝜕𝜓↓ ℏ2 𝜕2𝜓↓ 𝜕𝜓↑ 
{𝑖ℏ = − 2 + 𝑉(𝑥)𝜓↓ + 𝑄|𝜓|2𝜓↓ + 𝛼 

𝜕𝑡 2𝑚 𝜕𝑥 𝜕𝑥 

 
(6) 

 

𝜕𝜓↑ ℏ2 𝜕2𝜓↑ 𝜕𝜓↓ 
⎛𝑖ℏ = − 2 + 𝑉(𝑥)𝜓↑ + 𝑄|𝜓|2𝜓↑ − 𝑖𝛽 

𝜕𝑡 2𝑚 𝜕𝑥 𝜕𝑥 
⎨  𝜕𝜓↓ ℏ2 𝜕2𝜓↓ 𝜕𝜓↑ 
{𝑖ℏ = − + 𝑉(𝑥)𝜓↓ + 𝑄|𝜓|2𝜓↓ − 𝑖𝛽 

𝜕𝑡 2𝑚 𝜕𝑥2 𝜕𝑥 

 
(8) 

 

𝜓𝑗(𝑥, 0) = 𝜓0(𝑥), 𝑗 =↑, ↓ 
𝑗 

𝑎 𝑎 
𝜓𝑗 (

2 
, 𝑡) = 𝜓𝑗 (− 

2 
, 𝑡) = 0, 𝑗 =↑, ↓ 

(9) 

 

ψ(x, t = 0) = 
ψ↑(x, t = 0) 

≡ [ ] 
ψ↓(x, t = 0) 

 1  exp [− 
(x − x0)2 

+ ik x] 
c↑

] 
√σ√π 

⁄  2 x  [c↓ 
2σ 

 
(10) 
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system of units in which Planck's constant and the 
particle's mass have been chosen to equal one. Therefore, 
the effective parameters have been applied in the 
calculations in their dimensionless form. 

At first, we conducted some simulations in which the 
wave-packet's velocity was set differently. Their results 
which we gained in our previous work, have indicated that 
wave-packets with a velocity up to 𝑣 = 0.6 cannot transmit 
through a double-barrier. By contrast, wave-packets with a 
velocity higher than 𝑣 = 1.2 are almost entirely 
transmitted. As a result, we chose a low-energy wave- 
packet with a velocity of 𝑣 = 0.6 and a high-energy wave- 

packet with a velocity of 𝑣 = 1.2 and compared their 
behavior. Figures 1 to 4 show the variation of the 
transmission, reflection, and trapping coefficients of the 
aforementioned Gaussian wave-packets traveling through 
the double-barrier as a function of the barrier height and 
width. In these figures, panels A to C are associated with the 
case in which 𝛼 = 𝛽 = 0, panels D to F are related to the 
case of heterostructure with the dimensionless Rashba SOI 
(𝛼 = 0.009), and panels E to G are related to the case in 
which the dimensionless Dresselhaus SOI (𝛽 = 0.009) 
affects the tunneling process. 
To study the effect of the barrier height on the tunneling 
process, we have assumed a fully spin-up polarized 
Gaussian wave-packet impinging rectangular double- 
barrier in which the width of each barrier is 6, and their 
height varies from 0.3 to 0.8. The variation of scattering 
properties for two different assumed wave-packets versus 
the barrier height has been shown in Figures 1 and 2. 
As we expected, panels A to C in Figures 1 and 2 show that 
in the case of 𝛼 = 𝛽 = 0, the scattering properties for the 
spin-down wave-packet component are zero; which means 
in the absence of Rashba or Dresselhaus SOI, spin-flip does 
not occur. Furthermore, panels A, D, and G in Figure 1 show 
that when the barrier height increases, the transmission 
coefficient of a low-energy wave-packet sharply reduces, 
and for barriers higher than 0.3 vanishes. Moreover, panels 
A, D, and G in Figure 2 indicate that increasing the barrier 
height makes a smooth reduction in the transmission 
coefficient of a high-energy wave-packet. However, it 
should be noted that the maximum value of the 
transmission coefficient for low-energy wave-packets is 
only about 0.08 while, for high-energy wave-packets in the 
absence of SO interaction, and in the case of Dresselhaus 
SOI is approximately 0.9 and in the case of Rashba SOI is 
about 0.5. This means that, in general, low-energy wave- 
packets do not transmit through double-barriers. In 
addition, the high-speed wave-packet behavior in the 

presence of Dresselhaus SOI is similar to the case in which 
there is no SO interaction in the system. The only difference 
is that in the case of Dresselhaus SOI, the spin-polarization 
of the wave-packet completely changes. Whereas, under 
the influence of Rashba SOI, the contribution of spin-up and 
spin-down components of the transmission coefficient are 
almost equal. Hence, it can be said that by tunneling 
through a heterostructure by structural inversion 
asymmetry, an initially spin-up polarized wave-packet 
converts to a fully spin un-polarized wave-packet [22,25]. 

According to panels B, E, and H of Figure 1 for low- 
energy wave-packets, the reflection coefficient grows as 
the barrier height increases to 0.3 and then remains 
constant. Furthermore, panels B, E, and H of Figure 2 
demonstrate that the reflection coefficient increases by 
increasing the barrier height for high-energy wave-packets. 
This behavior can easily be explained by the fact that the 
potential energy of the potential barrier increases by 
increasing the barrier height and can dominate the kinetic 
energy of the wave-packet. Consequently, the wave-packet 
does not transmit through high potential barriers and 
experiences almost complete reflection. 

After that we studied the effect of the barrier width on 
the propagation coefficients of the system. In this case, we 
assumed barrier height 𝑉0 = 0.3, and barrier width 
increased from 6 to 24. Then in Figures 3 and 4, we plotted 
the variation of propagation coefficients versus the barrier 
width for the two assumed wave-packets. 

According to panels A, D, and G of Figure 3, when the 
barrier width grows to 10, the wave-packet’s transmission 
coefficient experiences a rapid reduction and then 
vanishes. The energy dependence of the transmission 
coefficient can also explain this behavior. By increasing the 
barrier width, the double barrier becomes broader and 
thus leads to reducing the confinement effects. Therefore, 
the energy eigenvalues of the system, and as a result, the 
transmission coefficient of the system decreases. Besides, 
as can be seen from Figure 3 (panels E and H), the reflection 
coefficient shows the same variation trend in the presence 
of both Rashba and Dresselhaus SOIs. In both cases, when 
the barrier width increases, the spin-up reflection 
coefficient shows a linear rise, and the spin-down reflection 
coefficient shows a linear fall. Panels (3-F) and (3-I) 
demonstrate that both the spin-up and the spin-down 
trapping coefficients increase and then reduce smoothly by 
growing the barrier width. The results indicate that the 
spin-up trapping coefficient in the systems lacking 
structural inversion symmetry has more value than in the 
systems with bulk inversion asymmetry. 
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Fig.1. Transmission coefficient (Panel A), reflection coefficient (Panel B), and trapping coefficient (Panel C) as a function of the barrier height for an 
initially spin-up polarized low-energy Gaussian wave-packet with electron-electron interaction strength Q = 0.5 and in the absence of the Rashba and 
the Dresselhaus SOCs. Panels (D), (E), and (F) are the same as panels (A), (B), and (C), respectively, but in the case of the dimensionless Rashba 
coefficient 𝛼 = 0.009. Panels (G), (H), and (I) are the same as panels (A), (B), and (C), respectively, but in the case of the dimensionless Dresselhaus 
coefficient 𝛽 = 0.009. We also assumed, barrier width 6, and wave-packet velocity 0.6. 

 

 

 

Fig.2. Same as Fig.1 but for an initially spin-up polarized high-energy Gaussian wave-packet with velocity 1.2. 
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Fig.3. Transmission coefficient (Panel A), reflection coefficient (Panel B), and trapping coefficient (Panel C) as a function of the barrier width for an 
initially spin-up polarized low-energy Gaussian wave-packet with electron-electron interaction strength Q = 0.5 and in the absence of the Rashba and 
the Dresselhaus SOCs. Panels (D), (E), and (F) are the same as panels (A), (B), and (C), respectively, but in the case of the dimensionless Rashba 
coefficient 𝛼 = 0.009. Panels (G), (H), and (I) are the same as panels (A), (B), and (C), respectively, but in the case of the dimensionless Dresselhaus 
coefficient 𝛽 = 0.009. We also assumed, barrier height 0.3, and wave-packet velocity 0.6. 

 
 
 

 

 

Fig.4. Same as Fig.3 but for an initially spin-up polarized high-energy Gaussian wave-packet with velocity 1.2. 
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According to Figure 4, in comparison to low-energy 
wave-packets (Fig.3), by increasing the width of the 
barrier, the transmission coefficient of the high-energy 
wave-packet increases, and its reflection coefficient 
decreases. However, the trapping coefficient value of the 
high-energy wave-packet does not change significantly. It 
should be mentioned that when an initially spin-up 
polarized wave-packet tunnels through a system in the 
presence of Rashba SOI, the wave-packet becomes 
completely spin-unpolarized. Furthermore, from panels B, 
E, and H of Figure 4, we can see that in the presence of the 
Rashba SOI, the reflection probability of the wave-packet is 
small. In contrast, in the case of Dresselhaus SOI and in the 
absence of any SO interactions, the reflection probability is 
approximately 20% and 26%, respectively. Moreover, by 
increasing the barrier width, the reflection probability 
gradually drops and becomes 6% and 10%, respectively. 
Panels C, E, and I of Figure 4 demonstrate the behavior of 
the trapping coefficient versus the barrier's width. The 
trapping coefficient is about zero for barriers with a width 
up to 12. However, as expected, the more the barrier width 
grows, the more the trapping coefficient increases. It is 
worth noting that in the presence of Rashba SOI, there is 
only a slight possibility that the wave-packet traps into a 
double-barrier. By contrast, in the case of Dresselhaus SOI, 

and in the absence of SO interactions, the trapping 
probability increases up to 4%, which is a remarkable 
value. For investigating the effect of Rashba and 
Dresselhaus SOIs on the transmission of wave-packets, we 
have plotted the variation of transmission coefficient 
versus the barrier width for some different Rashba and 
Dresselhaus coupling strengths. 

Panels (5-A) to (5-C) indicate that in the absence of 
Rashba SOI and in the case in which the Rashba SOI is weak, 
the transmission coefficient of the wave-packet oscillates 
as a function of the barrier width. In quantum mechanics, 
particles can be defined using plane waves. In this case, the 
Schrödinger equation in the absence of SOIs is exactly 
solvable [37]. Gaussian wave-packets are always built from 
a linear combination of plane waves. Therefore, the 
behavior of Gaussian wave-packets tunneling through the 
potential barriers is expected to be similar to the plane 
waves, which can be seen in the obtained results. However, 
when the Rashba coupling strength increases, the 
dependence of the transmission coefficient on the barrier 
width disappears, and the transmitted wave-packet 
becomes completely spin-unpolarized (panels (5-D) to (5- 
G)). 

 
 

 

Fig.5. Transmission coefficient as a function of the barrier width for an initially spin-up polarized high-energy Gaussian wave-packet with electron- 
electron interaction strength Q = 0.5 and in the presence of the Rashba SOC with different strengths. We also assumed, barrier height 0.3, and wave- 
packet velocity 1.2. 

 

 
According to Figure 6, we can see that when the 

Dresselhaus coefficient increases, the spin polarization of 
the transmitted wave-packet changes. Therefore, there are 
cases with specific Dresselhaus coupling strengths that 
lead to fully un-polarized transmitted wave-packets. By 
contrast, when the Rashba coupling strength is more than 

𝛼 = 0.012 (panel (5-E)), the transmitted wave-packet 
becomes almost entirely un-polarized. Another noteworthy 
point is that by tuning the Dresselhaus coefficient and the 
barrier width, one may design a system in which the high- 
energy wave packet's polarization completely changes 
when it tunnels through. 
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Fig.6. Same as Fig. 5 but in the presence of Dresselhaus SOI with different strengths. 

 

 

4. Conclusion 

In the present investigation, we have compared the 
scattering properties of high-energy and low-energy spin- 
polarized Gaussian wave-packets impinging a one- 
dimensional rectangular quantum double-barrier. The 
effect of Rashba and Dresselhaus SOIs and the geometrical 
parameters of the double-barrier on the tunneling 
properties of the wave-packets have been studied. 
Evidence showed that the presence of Rashba or 
Dresselhaus SOIs leads to considerable spin polarization in 
the wave-packet components. Furthermore, when the 
double-barrier height increased, the transmission 
coefficient of the low-energy wave-packet sharply reduced, 
and for double-barriers higher than 0.3 vanished, whereas 
for high-energy wave-packets increasing the barrier height 
made a smooth reduction in the transmission coefficient. 
However, by contrast to the high-energy wave-packets, the 
maximum value of the transmission coefficient for low- 
energy wave-packets was pretty small. Besides, for low- 
energy wave-packets, the reflection coefficient grew as the 
barrier height increased to 0.3 and then remained constant. 
By contrast, for high-energy wave-packets, the reflection 
coefficient increased by increasing the barrier height. In 
addition, for low-energy wave-packets, the transmission 
coefficient experienced a rapid decrease when the barrier 
width in the double-barrier grew to 10 and then vanished. 
Besides, the spin-up reflection coefficient increased 
linearly, and the spin-down reflection coefficient decreased 
linearly when the barrier width increased. Furthermore, 

both components of the trapping coefficient were reduced 
smoothly by increasing the barrier width. However, for 
high-energy wave-packets, by increasing the width of the 
barrier, the transmission coefficient and the reflection 
coefficient decreased. It should be pointed out that, in the 
presence of the Rashba SOI, the high-energy wave-packet 
did not reflect. By contrast, in attending Dresselhaus SOI, as 
well as in the absence of any SO interactions, the reflection 
probability was approximately 20% and 26%, respectively. 
Moreover, by increasing the barrier width, the reflection 
probability gradually dropped and became 6% and 10%, 
respectively. 

References 

[1] S. Franchi, G. Trevisi, L. Seravalli, and P. Frigeri, "Quantum 
dot nanostructures and molecular beam 
epitaxy." Progress in Crystal Growth and Characterization 
of Materials 47 (2003) 166-195. 

[2] H. Wang, "Numerical studies on the split-step finite 
difference method for nonlinear Schrödinger equations." 
Applied Mathematics and Computation170 (2005) 17-35. 

[3] Li. Meng, "A high-order split-step finite difference method 
for the system of the space fractional CNLS." The European 
Physical Journal Plus134 (2019) 244. 

[4] M. Dehghan, and A. Taleei, "A compact split-step finite 
difference method for solving the nonlinear Schrödinger 
equations with constant and variable coefficients." 
Computer Physics Communications 181(1) (2010) 43-51. 



M. Sabzevar/ Progress in Physics of Applied Materials 2 (2022) 113-121 121 
 

 

 

[5] M. Solaimani, M. Ghalandari, and L. Lavaei. "Competition of 
parabolic and periodic sinusoidal potential in the 
propagation of a soliton." Optik 155 (2018) 185-189. 

[6] I. Da, "A quadratic B-spline finite element method for 
solving nonlinear Schrödinger equation." Computer 
Methods in Applied Mechanics and Engineering 174 
(1999) 247-258. 

[7] J. Jin, N. Wei, and H. Zhang. "A two-grid finite-element 
method for the nonlinear Schiodinger equation." Journal 
of Computational Mathematics 33 (2015) 146. 

[8] H. Hu, and Y. Chen. "Numerical solution of two-dimensional 
nonlinear Schrödinger equation using a new two-grid 
finite element method." Computational and Applied 
Mathematics 364 (2020) 112333. 

[9] Y. Xu, and C. W. Shu. "Local discontinuous Galerkin methods 
for nonlinear Schrödinger equations." Journal of 
Computational Physics 205 (2005) 72-97. 

[10]  M. Solaimani, B. Farnam, M. Ghalandari, S. Z. SeyedShirazi. 
"Wave localization in two dimensional parabolic periodic 
refractive index profiles: a 4th order Runge–Kutta study." 
Optical and Quantum Electronics 50 (2018) 114. 

[11]  L. A. MacColl. "Note on the Transmission and Reflection of 
Wave Packets by Potential Barriers." Physical Review 40 
(1932) 621-626. 

[12]  A. Jauho, and M. M. Nieto. "Time-dependent tunneling of 
wave-packets through heterostructures in an applied 
field." Superlattices and Microstructures 2 (1986) 407- 
413. 

[13] F. Ancilotto, A. Selloni, A. F. Xu, and E. Tosatti. "Time- 
dependent tunneling of electron wave packets in a 
transverse magnetic field." Physical Review B 39 (1989) 
8322-8335. 

[14] D. Luis, H. Cruz H, and N. E. Capuj. "Suppression of the 
tunneling current in a bilayer electron system." Physical 
Review B 59 (1999) 9787-9790. 

[15]  D. Luis, J. P. Dı́az, N. E. Capuj, and H. Cruz. "Possibility of 
multiple tunnelling current peaks in a coupled quantum well 
system." Journal of Applied Physics 88 (2000) 943-947. 

[16]  H. Inaba, J. Nakagawa, K. Kurosawa, M. Okuda. "Dynamics 
of Resonant Tunneling in Double-Barrier Structures with 
Trapezoidal Potential Profile." Japanese Journal of Applied 
Physics 30 (1991) L544-L546. 

[17] H. De Raedt, N. García, and J. Huyghebaert. "Tunneling 
through time-modulated barriers: Is there a crossover 
frequency?." Solid State Communications 76 (1990) 847- 
850. 

[18] D. L. Haavig, and R. Reifenberger. "Dynamic transmission 
and reflection phenomena for a time-dependent 
rectangular potential." Physical Review B 26 (1982) 6408- 
6420. 

[19]  R. M. Dimeo. "Wave packet scattering from time-varying 
potential barriers in one dimension." American Journal of 
Physics 82 (2014) 142-152. 

[20] B. Jogai, K. L. Wang, and K. W. Brown. "High frequency 
amplification in quantum well oscillators." Superlattices 
and Microstructures 2 (1986) 259-265. 

[21] N. Kiriushcheva, S. Kuzmin. "Scattering of a Gaussian wave 
packet by a reflectionless potential." American Journal of 
Physics 66 (1998) 867-872. 

[22]  V.I. Perel’, S.A. Tarasenko, I.N. Yassievich, S.D. Ganichev, V.V. 
Bel’kov, W. Prettl. "Spin-dependent tunneling through a 

symmetric semiconductor barrier." Physical Review B 67 
(2003) 201304(R). 

[23] E. I. Rashba, and Y. A. Bychkov. "Oscillatory effects and the 
magnetic susceptibility of carriers in inversion layers." 
Journal of Physics C: Solid State Physics 17 (1984) 6039- 
6045. 

[24] G. Dresselhaus. "Spin-Orbit Coupling Effects in Zinc Blende 
Structures." Physical Review 100 (1955) 580-586. 

[25] H. Cruz, and D. Luis. "Possibility of spin device in a triple 
quantum well system." Journal of Applied Physics 
104 (2008) 083715. 

[26] H. Dakhlaoui, M. Nefzi, N. S Al-Shameri, A. Al Suwaidan, H. 
Elmobkey, S. Almansour, & I. Alnaim. "Spin-polarized 
transmission across heterostructure based on an 
InAs/GaSb/InGaAs system: Effect of accelerating 
quantum wells." Chemical Physics Letters 757 (2020) 
137866. 

[27] H. Dakhlaoui, M. Nefzi, N. S. Al-Shameri, A. Al Suwaidan, H. 
Elmobkey, S. Almansour, & I. Alnaim. "Magnetic field effect 
on spin-polarized transport in asymmetric multibarrier 
based on InAs/GaAs/GaSb systems." Physica B: 
Condensed Matter 597 (2020) 412403. 

[28] M.Solaimani,M.Izadifard,"Spinfilteringin GaAs/Al0.3Ga0.7As 
multiple quantum wells." Indian Journal of Physics (2020). 

[29] M. W. Lu, S. Y. Chen, G. L. Zhang, X. H. Huang, "Spin Filter 
Based on Magnetically Confined and Spin-Orbit Coupled 
GaAs/AlxGa1–xAs Heterostructure." IEEE Transactions 
on Electron Devices 65 (2018) 3045–3049. 

[30]  E. Diez, F. Domínguez-Adame, A. Sánchez. "Nonlinear 
resonant tunnelling through double-barrier structures." 
Physics Letters A 198 (1995) 403–406. 

[31] S. M. A. Aleomraninejad, M. Solaimani, M. Mohsenyzadeh, 
L. Lavaei, "Discretized Euler–Lagrange variational study of 
nonlinear optical rectification coefficients." Physica 
Scripta 93 (2018) 095803. 

[32]  H. Cruz. "Wave-packet oscillations in a strongly driven InAs 
quantum well." Journal of Applied Physics 93 (2003) 
1620–1623. 

[33]  G. A. Intronati, P. I. Tamborenea, D. Weinmann, R. A. 
Jalabert. "Spin-orbit effects in nanowire-based wurtzite 
semiconductor quantum dots." Physical Review B 88 
(2013) 045303. 

[34]  M. Sabzevar, M. H. Ehsani, M. Solaimani, M. Ghorbani, 
"Optical properties of a few semiconducting 
heterostructures in the presence of Rashba spin-orbit 
interactions: a two-dimensional finite-difference 
numerical approach." Journal of the Optical Society of 
America B 36 (2019) 1774-1782. 

[35]  J. P. Loehr. "Physics of Strained Quantum Well Lasers." 
(1998) 143-144. 

[36]  I. V. Kozlov, Y. A. Kolesnichenko. "Magnetic field driven 
topological transitions in the noncentrosymmetric energy 
spectrum of the two-dimensional electron gas with 
Rashba-Dresselhaus spin-orbit interaction." Physical 
Review B 99 (2019) 085129. 

[37] M. H. Bramhall, and B. M. Casper, "Reflections on a Wave 
Packet Approach to Quantum Mechanical Barrier 
Penetration." American Journal of Physics 38 (1970) 
1136–1145. 


